NO Problem 1: Infeasibility Problem: [(VAR vNonEmpty x y vNonEmpty x y) (STRATEGY CONTEXTSENSITIVE (+ 1 2) (0) (fSNonEmpty) (s 1) ) (RULES +(0,x) -> x +(s(x),y) -> s(+(x,y)) ) ] Infeasibility Conditions: +(s(x),y) ->* s(y) Problem 1: Obtaining a proof using Prover9: -> Prover9 Output: ============================== Prover9 =============================== Prover9 (64) version 2009-11A, November 2009. Process 3413439 was started by sandbox2 on z021.star.cs.uiowa.edu, Tue Jul 30 09:47:55 2024 The command was "./prover9 -f /tmp/prover93413430-0.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file /tmp/prover93413430-0.in assign(max_seconds,20). formulas(assumptions). ->_s0(x1,y) -> ->_s0(+(x1,x2),+(y,x2)) # label(congruence). ->_s0(x2,y) -> ->_s0(+(x1,x2),+(x1,y)) # label(congruence). ->_s0(x1,y) -> ->_s0(s(x1),s(y)) # label(congruence). ->_s0(+(0,x1),x1) # label(replacement). ->_s0(+(s(x1),x2),s(+(x1,x2))) # label(replacement). ->*_s0(x,x) # label(reflexivity). ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity). end_of_list. formulas(goals). (exists x4 exists x5 ->*_s0(+(s(x4),x5),s(x5))) # label(goal). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 ->_s0(x1,y) -> ->_s0(+(x1,x2),+(y,x2)) # label(congruence) # label(non_clause). [assumption]. 2 ->_s0(x2,y) -> ->_s0(+(x1,x2),+(x1,y)) # label(congruence) # label(non_clause). [assumption]. 3 ->_s0(x1,y) -> ->_s0(s(x1),s(y)) # label(congruence) # label(non_clause). [assumption]. 4 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 5 (exists x4 exists x5 ->*_s0(+(s(x4),x5),s(x5))) # label(goal) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -->_s0(x,y) | ->_s0(+(x,z),+(y,z)) # label(congruence). [clausify(1)]. -->_s0(x,y) | ->_s0(+(z,x),+(z,y)) # label(congruence). [clausify(2)]. -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. ->_s0(+(0,x),x) # label(replacement). [assumption]. ->_s0(+(s(x),y),s(+(x,y))) # label(replacement). [assumption]. ->*_s0(x,x) # label(reflexivity). [assumption]. -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(4)]. -->*_s0(+(s(x),y),s(y)) # label(goal). [deny(5)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label goal to answer in negative clause Term ordering decisions: Predicate symbol precedence: predicate_order([ ->_s0, ->*_s0 ]). Function symbol precedence: function_order([ 0, +, s ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=-3) % clear(ordered_res). % (HNE depth_diff=-3) % set(ur_resolution). % (HNE depth_diff=-3) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 6 -->_s0(x,y) | ->_s0(+(x,z),+(y,z)) # label(congruence). [clausify(1)]. kept: 7 -->_s0(x,y) | ->_s0(+(z,x),+(z,y)) # label(congruence). [clausify(2)]. kept: 8 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. kept: 9 ->_s0(+(0,x),x) # label(replacement). [assumption]. kept: 10 ->_s0(+(s(x),y),s(+(x,y))) # label(replacement). [assumption]. kept: 11 ->*_s0(x,x) # label(reflexivity). [assumption]. kept: 12 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(4)]. kept: 13 -->*_s0(+(s(x),y),s(y)) # label(goal) # answer(goal). [deny(5)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 6 -->_s0(x,y) | ->_s0(+(x,z),+(y,z)) # label(congruence). [clausify(1)]. 7 -->_s0(x,y) | ->_s0(+(z,x),+(z,y)) # label(congruence). [clausify(2)]. 8 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. 9 ->_s0(+(0,x),x) # label(replacement). [assumption]. 10 ->_s0(+(s(x),y),s(+(x,y))) # label(replacement). [assumption]. 11 ->*_s0(x,x) # label(reflexivity). [assumption]. 12 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(4)]. 13 -->*_s0(+(s(x),y),s(y)) # label(goal) # answer(goal). [deny(5)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=10): 6 -->_s0(x,y) | ->_s0(+(x,z),+(y,z)) # label(congruence). [clausify(1)]. given #2 (I,wt=10): 7 -->_s0(x,y) | ->_s0(+(z,x),+(z,y)) # label(congruence). [clausify(2)]. given #3 (I,wt=8): 8 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. given #4 (I,wt=5): 9 ->_s0(+(0,x),x) # label(replacement). [assumption]. given #5 (I,wt=9): 10 ->_s0(+(s(x),y),s(+(x,y))) # label(replacement). [assumption]. given #6 (I,wt=3): 11 ->*_s0(x,x) # label(reflexivity). [assumption]. given #7 (I,wt=9): 12 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(4)]. given #8 (I,wt=7): 13 -->*_s0(+(s(x),y),s(y)) # label(goal) # answer(goal). [deny(5)]. given #9 (A,wt=7): 14 ->_s0(s(+(0,x)),s(x)). [ur(8,a,9,a)]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds: goal. % Length of proof is 13. % Level of proof is 4. % Maximum clause weight is 9.000. % Given clauses 9. 3 ->_s0(x1,y) -> ->_s0(s(x1),s(y)) # label(congruence) # label(non_clause). [assumption]. 4 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 5 (exists x4 exists x5 ->*_s0(+(s(x4),x5),s(x5))) # label(goal) # label(non_clause) # label(goal). [goal]. 8 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. 9 ->_s0(+(0,x),x) # label(replacement). [assumption]. 10 ->_s0(+(s(x),y),s(+(x,y))) # label(replacement). [assumption]. 11 ->*_s0(x,x) # label(reflexivity). [assumption]. 12 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(4)]. 13 -->*_s0(+(s(x),y),s(y)) # label(goal) # answer(goal). [deny(5)]. 14 ->_s0(s(+(0,x)),s(x)). [ur(8,a,9,a)]. 24 -->*_s0(s(+(x,y)),s(y)) # answer(goal). [ur(12,a,10,a,c,13,a)]. 25 ->*_s0(s(+(0,x)),s(x)). [ur(12,a,14,a,b,11,a)]. 26 $F # answer(goal). [resolve(25,a,24,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=9. Generated=20. Kept=20. proofs=1. Usable=9. Sos=10. Demods=0. Limbo=0, Disabled=8. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=1. Nonunit_bsub_feature_tests=9. Megabytes=0.07. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 3413439 exit (max_proofs) Tue Jul 30 09:47:55 2024 The problem is feasible.