NO Problem 1: Infeasibility Problem: [(VAR vNonEmpty x vNonEmpty x1) (STRATEGY CONTEXTSENSITIVE (e 1) (o 1) (0) (fSNonEmpty) (false) (s 1) (true) ) (RULES e(0) -> true e(s(x)) -> false | e(x) ->* true e(s(x)) -> true | o(x) ->* true o(0) -> true o(s(x)) -> false | o(x) ->* true o(s(x)) -> true | e(x) ->* true ) ] Infeasibility Conditions: e(x1) ->* true, o(x1) ->* true Problem 1: Obtaining a proof using Prover9: -> Prover9 Output: ============================== Prover9 =============================== Prover9 (64) version 2009-11A, November 2009. Process 3406812 was started by sandbox2 on z025.star.cs.uiowa.edu, Tue Jul 30 09:50:40 2024 The command was "./prover9 -f /tmp/prover93406802-0.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file /tmp/prover93406802-0.in assign(max_seconds,20). formulas(assumptions). ->_s0(x1,y) -> ->_s0(e(x1),e(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(o(x1),o(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(s(x1),s(y)) # label(congruence). ->_s0(e(0),true) # label(replacement). ->*_s0(e(x1),true) -> ->_s0(e(s(x1)),false) # label(replacement). ->*_s0(o(x1),true) -> ->_s0(e(s(x1)),true) # label(replacement). ->_s0(o(0),true) # label(replacement). ->*_s0(o(x1),true) -> ->_s0(o(s(x1)),false) # label(replacement). ->*_s0(e(x1),true) -> ->_s0(o(s(x1)),true) # label(replacement). ->*_s0(x,x) # label(reflexivity). ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity). end_of_list. formulas(goals). (exists x3 (->*_s0(e(x3),true) & ->*_s0(o(x3),true))) # label(goal). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 ->_s0(x1,y) -> ->_s0(e(x1),e(y)) # label(congruence) # label(non_clause). [assumption]. 2 ->_s0(x1,y) -> ->_s0(o(x1),o(y)) # label(congruence) # label(non_clause). [assumption]. 3 ->_s0(x1,y) -> ->_s0(s(x1),s(y)) # label(congruence) # label(non_clause). [assumption]. 4 ->*_s0(e(x1),true) -> ->_s0(e(s(x1)),false) # label(replacement) # label(non_clause). [assumption]. 5 ->*_s0(o(x1),true) -> ->_s0(e(s(x1)),true) # label(replacement) # label(non_clause). [assumption]. 6 ->*_s0(o(x1),true) -> ->_s0(o(s(x1)),false) # label(replacement) # label(non_clause). [assumption]. 7 ->*_s0(e(x1),true) -> ->_s0(o(s(x1)),true) # label(replacement) # label(non_clause). [assumption]. 8 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 9 (exists x3 (->*_s0(e(x3),true) & ->*_s0(o(x3),true))) # label(goal) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -->_s0(x,y) | ->_s0(e(x),e(y)) # label(congruence). [clausify(1)]. -->_s0(x,y) | ->_s0(o(x),o(y)) # label(congruence). [clausify(2)]. -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. ->_s0(e(0),true) # label(replacement). [assumption]. -->*_s0(e(x),true) | ->_s0(e(s(x)),false) # label(replacement). [clausify(4)]. -->*_s0(o(x),true) | ->_s0(e(s(x)),true) # label(replacement). [clausify(5)]. ->_s0(o(0),true) # label(replacement). [assumption]. -->*_s0(o(x),true) | ->_s0(o(s(x)),false) # label(replacement). [clausify(6)]. -->*_s0(e(x),true) | ->_s0(o(s(x)),true) # label(replacement). [clausify(7)]. ->*_s0(x,x) # label(reflexivity). [assumption]. -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(8)]. -->*_s0(e(x),true) | -->*_s0(o(x),true) # label(goal). [deny(9)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label goal to answer in negative clause Term ordering decisions: Predicate symbol precedence: predicate_order([ ->_s0, ->*_s0 ]). Function symbol precedence: function_order([ true, 0, false, e, o, s ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=-7) % clear(ordered_res). % (HNE depth_diff=-7) % set(ur_resolution). % (HNE depth_diff=-7) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: % set(unit_deletion). % (Horn set with negative nonunits) kept: 10 -->_s0(x,y) | ->_s0(e(x),e(y)) # label(congruence). [clausify(1)]. kept: 11 -->_s0(x,y) | ->_s0(o(x),o(y)) # label(congruence). [clausify(2)]. kept: 12 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. kept: 13 ->_s0(e(0),true) # label(replacement). [assumption]. kept: 14 -->*_s0(e(x),true) | ->_s0(e(s(x)),false) # label(replacement). [clausify(4)]. kept: 15 -->*_s0(o(x),true) | ->_s0(e(s(x)),true) # label(replacement). [clausify(5)]. kept: 16 ->_s0(o(0),true) # label(replacement). [assumption]. kept: 17 -->*_s0(o(x),true) | ->_s0(o(s(x)),false) # label(replacement). [clausify(6)]. kept: 18 -->*_s0(e(x),true) | ->_s0(o(s(x)),true) # label(replacement). [clausify(7)]. kept: 19 ->*_s0(x,x) # label(reflexivity). [assumption]. kept: 20 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(8)]. kept: 21 -->*_s0(e(x),true) | -->*_s0(o(x),true) # label(goal) # answer(goal). [deny(9)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 10 -->_s0(x,y) | ->_s0(e(x),e(y)) # label(congruence). [clausify(1)]. 11 -->_s0(x,y) | ->_s0(o(x),o(y)) # label(congruence). [clausify(2)]. 12 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. 13 ->_s0(e(0),true) # label(replacement). [assumption]. 14 -->*_s0(e(x),true) | ->_s0(e(s(x)),false) # label(replacement). [clausify(4)]. 15 -->*_s0(o(x),true) | ->_s0(e(s(x)),true) # label(replacement). [clausify(5)]. 16 ->_s0(o(0),true) # label(replacement). [assumption]. 17 -->*_s0(o(x),true) | ->_s0(o(s(x)),false) # label(replacement). [clausify(6)]. 18 -->*_s0(e(x),true) | ->_s0(o(s(x)),true) # label(replacement). [clausify(7)]. 19 ->*_s0(x,x) # label(reflexivity). [assumption]. 20 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(8)]. 21 -->*_s0(e(x),true) | -->*_s0(o(x),true) # label(goal) # answer(goal). [deny(9)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.00 seconds. given #1 (I,wt=8): 10 -->_s0(x,y) | ->_s0(e(x),e(y)) # label(congruence). [clausify(1)]. given #2 (I,wt=8): 11 -->_s0(x,y) | ->_s0(o(x),o(y)) # label(congruence). [clausify(2)]. given #3 (I,wt=8): 12 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(3)]. given #4 (I,wt=4): 13 ->_s0(e(0),true) # label(replacement). [assumption]. given #5 (I,wt=9): 14 -->*_s0(e(x),true) | ->_s0(e(s(x)),false) # label(replacement). [clausify(4)]. given #6 (I,wt=9): 15 -->*_s0(o(x),true) | ->_s0(e(s(x)),true) # label(replacement). [clausify(5)]. given #7 (I,wt=4): 16 ->_s0(o(0),true) # label(replacement). [assumption]. given #8 (I,wt=9): 17 -->*_s0(o(x),true) | ->_s0(o(s(x)),false) # label(replacement). [clausify(6)]. given #9 (I,wt=9): 18 -->*_s0(e(x),true) | ->_s0(o(s(x)),true) # label(replacement). [clausify(7)]. given #10 (I,wt=3): 19 ->*_s0(x,x) # label(reflexivity). [assumption]. given #11 (I,wt=9): 20 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(8)]. given #12 (I,wt=8): 21 -->*_s0(e(x),true) | -->*_s0(o(x),true) # label(goal) # answer(goal). [deny(9)]. given #13 (A,wt=6): 22 ->_s0(s(e(0)),s(true)). [ur(12,a,13,a)]. given #14 (F,wt=11): 30 -->*_s0(o(x),true) | -->_s0(e(x),y) | -->*_s0(y,true) # answer(goal). [resolve(21,a,20,c)]. ============================== PROOF ================================= % Proof 1 at 0.00 (+ 0.00) seconds: goal. % Length of proof is 10. % Level of proof is 3. % Maximum clause weight is 11.000. % Given clauses 14. 8 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 9 (exists x3 (->*_s0(e(x3),true) & ->*_s0(o(x3),true))) # label(goal) # label(non_clause) # label(goal). [goal]. 13 ->_s0(e(0),true) # label(replacement). [assumption]. 16 ->_s0(o(0),true) # label(replacement). [assumption]. 19 ->*_s0(x,x) # label(reflexivity). [assumption]. 20 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(8)]. 21 -->*_s0(e(x),true) | -->*_s0(o(x),true) # label(goal) # answer(goal). [deny(9)]. 28 ->*_s0(o(0),true). [ur(20,a,16,a,b,19,a)]. 30 -->*_s0(o(x),true) | -->_s0(e(x),y) | -->*_s0(y,true) # answer(goal). [resolve(21,a,20,c)]. 39 $F # answer(goal). [resolve(30,b,13,a),unit_del(a,28),unit_del(b,19)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=14. Generated=30. Kept=29. proofs=1. Usable=14. Sos=12. Demods=0. Limbo=3, Disabled=12. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=7. Nonunit_bsub_feature_tests=14. Megabytes=0.09. User_CPU=0.00, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 3406812 exit (max_proofs) Tue Jul 30 09:50:40 2024 The problem is feasible.