NO Problem 1: Infeasibility Problem: [(VAR vNonEmpty x y vNonEmpty x1) (STRATEGY CONTEXTSENSITIVE (f 1 2) (g 1) (h 1) (a) (c 1) (fSNonEmpty) (s 1) ) (RULES f(x,y) -> g(s(x)) | c(g(x)) ->* c(a) f(x,y) -> h(s(x)) | c(h(x)) ->* c(a) g(s(x)) -> x h(s(x)) -> x ) ] Infeasibility Conditions: c(g(x1)) ->* c(a), c(h(x1)) ->* c(a) Problem 1: Obtaining a proof using Prover9: -> Prover9 Output: ============================== Prover9 =============================== Prover9 (64) version 2009-11A, November 2009. Process 3317208 was started by sandbox2 on z016.star.cs.uiowa.edu, Tue Jul 30 09:17:25 2024 The command was "./prover9 -f /tmp/prover93317197-0.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file /tmp/prover93317197-0.in assign(max_seconds,20). formulas(assumptions). ->_s0(x1,y) -> ->_s0(f(x1,x2),f(y,x2)) # label(congruence). ->_s0(x2,y) -> ->_s0(f(x1,x2),f(x1,y)) # label(congruence). ->_s0(x1,y) -> ->_s0(g(x1),g(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(h(x1),h(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(c(x1),c(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(s(x1),s(y)) # label(congruence). ->*_s0(c(g(x1)),c(a)) -> ->_s0(f(x1,x2),g(s(x1))) # label(replacement). ->*_s0(c(h(x1)),c(a)) -> ->_s0(f(x1,x2),h(s(x1))) # label(replacement). ->_s0(g(s(x1)),x1) # label(replacement). ->_s0(h(s(x1)),x1) # label(replacement). ->*_s0(x,x) # label(reflexivity). ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity). end_of_list. formulas(goals). (exists x4 (->*_s0(c(g(x4)),c(a)) & ->*_s0(c(h(x4)),c(a)))) # label(goal). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 ->_s0(x1,y) -> ->_s0(f(x1,x2),f(y,x2)) # label(congruence) # label(non_clause). [assumption]. 2 ->_s0(x2,y) -> ->_s0(f(x1,x2),f(x1,y)) # label(congruence) # label(non_clause). [assumption]. 3 ->_s0(x1,y) -> ->_s0(g(x1),g(y)) # label(congruence) # label(non_clause). [assumption]. 4 ->_s0(x1,y) -> ->_s0(h(x1),h(y)) # label(congruence) # label(non_clause). [assumption]. 5 ->_s0(x1,y) -> ->_s0(c(x1),c(y)) # label(congruence) # label(non_clause). [assumption]. 6 ->_s0(x1,y) -> ->_s0(s(x1),s(y)) # label(congruence) # label(non_clause). [assumption]. 7 ->*_s0(c(g(x1)),c(a)) -> ->_s0(f(x1,x2),g(s(x1))) # label(replacement) # label(non_clause). [assumption]. 8 ->*_s0(c(h(x1)),c(a)) -> ->_s0(f(x1,x2),h(s(x1))) # label(replacement) # label(non_clause). [assumption]. 9 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 10 (exists x4 (->*_s0(c(g(x4)),c(a)) & ->*_s0(c(h(x4)),c(a)))) # label(goal) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -->_s0(x,y) | ->_s0(f(x,z),f(y,z)) # label(congruence). [clausify(1)]. -->_s0(x,y) | ->_s0(f(z,x),f(z,y)) # label(congruence). [clausify(2)]. -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(4)]. -->_s0(x,y) | ->_s0(c(x),c(y)) # label(congruence). [clausify(5)]. -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(6)]. -->*_s0(c(g(x)),c(a)) | ->_s0(f(x,y),g(s(x))) # label(replacement). [clausify(7)]. -->*_s0(c(h(x)),c(a)) | ->_s0(f(x,y),h(s(x))) # label(replacement). [clausify(8)]. ->_s0(g(s(x)),x) # label(replacement). [assumption]. ->_s0(h(s(x)),x) # label(replacement). [assumption]. ->*_s0(x,x) # label(reflexivity). [assumption]. -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(9)]. -->*_s0(c(g(x)),c(a)) | -->*_s0(c(h(x)),c(a)) # label(goal). [deny(10)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label goal to answer in negative clause Term ordering decisions: Predicate symbol precedence: predicate_order([ ->_s0, ->*_s0 ]). Function symbol precedence: function_order([ a, f, c, s, g, h ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=-6) % clear(ordered_res). % (HNE depth_diff=-6) % set(ur_resolution). % (HNE depth_diff=-6) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: % set(unit_deletion). % (Horn set with negative nonunits) kept: 11 -->_s0(x,y) | ->_s0(f(x,z),f(y,z)) # label(congruence). [clausify(1)]. kept: 12 -->_s0(x,y) | ->_s0(f(z,x),f(z,y)) # label(congruence). [clausify(2)]. kept: 13 -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. kept: 14 -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(4)]. kept: 15 -->_s0(x,y) | ->_s0(c(x),c(y)) # label(congruence). [clausify(5)]. kept: 16 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(6)]. kept: 17 -->*_s0(c(g(x)),c(a)) | ->_s0(f(x,y),g(s(x))) # label(replacement). [clausify(7)]. kept: 18 -->*_s0(c(h(x)),c(a)) | ->_s0(f(x,y),h(s(x))) # label(replacement). [clausify(8)]. kept: 19 ->_s0(g(s(x)),x) # label(replacement). [assumption]. kept: 20 ->_s0(h(s(x)),x) # label(replacement). [assumption]. kept: 21 ->*_s0(x,x) # label(reflexivity). [assumption]. kept: 22 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(9)]. kept: 23 -->*_s0(c(g(x)),c(a)) | -->*_s0(c(h(x)),c(a)) # label(goal) # answer(goal). [deny(10)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 11 -->_s0(x,y) | ->_s0(f(x,z),f(y,z)) # label(congruence). [clausify(1)]. 12 -->_s0(x,y) | ->_s0(f(z,x),f(z,y)) # label(congruence). [clausify(2)]. 13 -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. 14 -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(4)]. 15 -->_s0(x,y) | ->_s0(c(x),c(y)) # label(congruence). [clausify(5)]. 16 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(6)]. 17 -->*_s0(c(g(x)),c(a)) | ->_s0(f(x,y),g(s(x))) # label(replacement). [clausify(7)]. 18 -->*_s0(c(h(x)),c(a)) | ->_s0(f(x,y),h(s(x))) # label(replacement). [clausify(8)]. 19 ->_s0(g(s(x)),x) # label(replacement). [assumption]. 20 ->_s0(h(s(x)),x) # label(replacement). [assumption]. 21 ->*_s0(x,x) # label(reflexivity). [assumption]. 22 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(9)]. 23 -->*_s0(c(g(x)),c(a)) | -->*_s0(c(h(x)),c(a)) # label(goal) # answer(goal). [deny(10)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=10): 11 -->_s0(x,y) | ->_s0(f(x,z),f(y,z)) # label(congruence). [clausify(1)]. given #2 (I,wt=10): 12 -->_s0(x,y) | ->_s0(f(z,x),f(z,y)) # label(congruence). [clausify(2)]. given #3 (I,wt=8): 13 -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. given #4 (I,wt=8): 14 -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(4)]. given #5 (I,wt=8): 15 -->_s0(x,y) | ->_s0(c(x),c(y)) # label(congruence). [clausify(5)]. given #6 (I,wt=8): 16 -->_s0(x,y) | ->_s0(s(x),s(y)) # label(congruence). [clausify(6)]. given #7 (I,wt=13): 17 -->*_s0(c(g(x)),c(a)) | ->_s0(f(x,y),g(s(x))) # label(replacement). [clausify(7)]. given #8 (I,wt=13): 18 -->*_s0(c(h(x)),c(a)) | ->_s0(f(x,y),h(s(x))) # label(replacement). [clausify(8)]. given #9 (I,wt=5): 19 ->_s0(g(s(x)),x) # label(replacement). [assumption]. given #10 (I,wt=5): 20 ->_s0(h(s(x)),x) # label(replacement). [assumption]. given #11 (I,wt=3): 21 ->*_s0(x,x) # label(reflexivity). [assumption]. given #12 (I,wt=9): 22 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(9)]. given #13 (I,wt=12): 23 -->*_s0(c(g(x)),c(a)) | -->*_s0(c(h(x)),c(a)) # label(goal) # answer(goal). [deny(10)]. given #14 (A,wt=7): 24 ->_s0(s(g(s(x))),s(x)). [ur(16,a,19,a)]. given #15 (F,wt=15): 38 -->*_s0(c(h(x)),c(a)) | -->_s0(c(g(x)),y) | -->*_s0(y,c(a)) # answer(goal). [resolve(23,a,22,c)]. given #16 (F,wt=12): 49 -->*_s0(c(h(x)),c(a)) | -->_s0(c(g(x)),c(a)) # answer(goal). [resolve(38,c,21,a)]. given #17 (F,wt=10): 51 -->*_s0(c(h(x)),c(a)) | -->_s0(g(x),a) # answer(goal). [resolve(49,b,15,b)]. given #18 (F,wt=7): 53 -->*_s0(c(h(s(a))),c(a)) # answer(goal). [resolve(51,b,19,a)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds: goal. % Length of proof is 15. % Level of proof is 6. % Maximum clause weight is 15.000. % Given clauses 18. 5 ->_s0(x1,y) -> ->_s0(c(x1),c(y)) # label(congruence) # label(non_clause). [assumption]. 9 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 10 (exists x4 (->*_s0(c(g(x4)),c(a)) & ->*_s0(c(h(x4)),c(a)))) # label(goal) # label(non_clause) # label(goal). [goal]. 15 -->_s0(x,y) | ->_s0(c(x),c(y)) # label(congruence). [clausify(5)]. 19 ->_s0(g(s(x)),x) # label(replacement). [assumption]. 20 ->_s0(h(s(x)),x) # label(replacement). [assumption]. 21 ->*_s0(x,x) # label(reflexivity). [assumption]. 22 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(9)]. 23 -->*_s0(c(g(x)),c(a)) | -->*_s0(c(h(x)),c(a)) # label(goal) # answer(goal). [deny(10)]. 31 ->_s0(c(h(s(x))),c(x)). [ur(15,a,20,a)]. 38 -->*_s0(c(h(x)),c(a)) | -->_s0(c(g(x)),y) | -->*_s0(y,c(a)) # answer(goal). [resolve(23,a,22,c)]. 49 -->*_s0(c(h(x)),c(a)) | -->_s0(c(g(x)),c(a)) # answer(goal). [resolve(38,c,21,a)]. 51 -->*_s0(c(h(x)),c(a)) | -->_s0(g(x),a) # answer(goal). [resolve(49,b,15,b)]. 53 -->*_s0(c(h(s(a))),c(a)) # answer(goal). [resolve(51,b,19,a)]. 55 $F # answer(goal). [ur(22,b,21,a,c,53,a),unit_del(a,31)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=18. Generated=47. Kept=44. proofs=1. Usable=18. Sos=25. Demods=0. Limbo=1, Disabled=13. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=2. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=14. Nonunit_bsub_feature_tests=48. Megabytes=0.13. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 3317208 exit (max_proofs) Tue Jul 30 09:17:25 2024 The problem is feasible.