NO Problem 1: Infeasibility Problem: [(VAR vNonEmpty x vNonEmpty) (STRATEGY CONTEXTSENSITIVE (a) (c) (f 1) (h 1) (b) (fSNonEmpty) (g 1) (k 1) ) (RULES a -> b c -> k(f(a)) c -> k(g(b)) f(x) -> g(x) | h(f(x)) ->* k(g(b)) h(f(a)) -> c h(x) -> k(x) ) ] Infeasibility Conditions: h(f(a)) ->* k(g(b)) Problem 1: Obtaining a proof using Prover9: -> Prover9 Output: ============================== Prover9 =============================== Prover9 (64) version 2009-11A, November 2009. Process 3256793 was started by sandbox on z006.star.cs.uiowa.edu, Tue Jul 30 08:59:55 2024 The command was "./prover9 -f /tmp/prover93256782-0.in". ============================== end of head =========================== ============================== INPUT ================================= % Reading from file /tmp/prover93256782-0.in assign(max_seconds,20). formulas(assumptions). ->_s0(x1,y) -> ->_s0(f(x1),f(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(h(x1),h(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(g(x1),g(y)) # label(congruence). ->_s0(x1,y) -> ->_s0(k(x1),k(y)) # label(congruence). ->_s0(a,b) # label(replacement). ->_s0(c,k(f(a))) # label(replacement). ->_s0(c,k(g(b))) # label(replacement). ->*_s0(h(f(x1)),k(g(b))) -> ->_s0(f(x1),g(x1)) # label(replacement). ->_s0(h(f(a)),c) # label(replacement). ->_s0(h(x1),k(x1)) # label(replacement). ->*_s0(x,x) # label(reflexivity). ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity). end_of_list. formulas(goals). ->*_s0(h(f(a)),k(g(b))) # label(goal). end_of_list. ============================== end of input ========================== ============================== PROCESS NON-CLAUSAL FORMULAS ========== % Formulas that are not ordinary clauses: 1 ->_s0(x1,y) -> ->_s0(f(x1),f(y)) # label(congruence) # label(non_clause). [assumption]. 2 ->_s0(x1,y) -> ->_s0(h(x1),h(y)) # label(congruence) # label(non_clause). [assumption]. 3 ->_s0(x1,y) -> ->_s0(g(x1),g(y)) # label(congruence) # label(non_clause). [assumption]. 4 ->_s0(x1,y) -> ->_s0(k(x1),k(y)) # label(congruence) # label(non_clause). [assumption]. 5 ->*_s0(h(f(x1)),k(g(b))) -> ->_s0(f(x1),g(x1)) # label(replacement) # label(non_clause). [assumption]. 6 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 7 ->*_s0(h(f(a)),k(g(b))) # label(goal) # label(non_clause) # label(goal). [goal]. ============================== end of process non-clausal formulas === ============================== PROCESS INITIAL CLAUSES =============== % Clauses before input processing: formulas(usable). end_of_list. formulas(sos). -->_s0(x,y) | ->_s0(f(x),f(y)) # label(congruence). [clausify(1)]. -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(2)]. -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. -->_s0(x,y) | ->_s0(k(x),k(y)) # label(congruence). [clausify(4)]. ->_s0(a,b) # label(replacement). [assumption]. ->_s0(c,k(f(a))) # label(replacement). [assumption]. ->_s0(c,k(g(b))) # label(replacement). [assumption]. -->*_s0(h(f(x)),k(g(b))) | ->_s0(f(x),g(x)) # label(replacement). [clausify(5)]. ->_s0(h(f(a)),c) # label(replacement). [assumption]. ->_s0(h(x),k(x)) # label(replacement). [assumption]. ->*_s0(x,x) # label(reflexivity). [assumption]. -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(6)]. -->*_s0(h(f(a)),k(g(b))) # label(goal). [deny(7)]. end_of_list. formulas(demodulators). end_of_list. ============================== PREDICATE ELIMINATION ================= No predicates eliminated. ============================== end predicate elimination ============= Auto_denials: % copying label goal to answer in negative clause Term ordering decisions: Predicate symbol precedence: predicate_order([ ->_s0, ->*_s0 ]). Function symbol precedence: function_order([ a, c, b, f, k, h, g ]). After inverse_order: (no changes). Unfolding symbols: (none). Auto_inference settings: % set(neg_binary_resolution). % (HNE depth_diff=-3) % clear(ordered_res). % (HNE depth_diff=-3) % set(ur_resolution). % (HNE depth_diff=-3) % set(ur_resolution) -> set(pos_ur_resolution). % set(ur_resolution) -> set(neg_ur_resolution). Auto_process settings: (no changes). kept: 8 -->_s0(x,y) | ->_s0(f(x),f(y)) # label(congruence). [clausify(1)]. kept: 9 -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(2)]. kept: 10 -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. kept: 11 -->_s0(x,y) | ->_s0(k(x),k(y)) # label(congruence). [clausify(4)]. kept: 12 ->_s0(a,b) # label(replacement). [assumption]. kept: 13 ->_s0(c,k(f(a))) # label(replacement). [assumption]. kept: 14 ->_s0(c,k(g(b))) # label(replacement). [assumption]. kept: 15 -->*_s0(h(f(x)),k(g(b))) | ->_s0(f(x),g(x)) # label(replacement). [clausify(5)]. kept: 16 ->_s0(h(f(a)),c) # label(replacement). [assumption]. kept: 17 ->_s0(h(x),k(x)) # label(replacement). [assumption]. kept: 18 ->*_s0(x,x) # label(reflexivity). [assumption]. kept: 19 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(6)]. kept: 20 -->*_s0(h(f(a)),k(g(b))) # label(goal) # answer(goal). [deny(7)]. ============================== end of process initial clauses ======== ============================== CLAUSES FOR SEARCH ==================== % Clauses after input processing: formulas(usable). end_of_list. formulas(sos). 8 -->_s0(x,y) | ->_s0(f(x),f(y)) # label(congruence). [clausify(1)]. 9 -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(2)]. 10 -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. 11 -->_s0(x,y) | ->_s0(k(x),k(y)) # label(congruence). [clausify(4)]. 12 ->_s0(a,b) # label(replacement). [assumption]. 13 ->_s0(c,k(f(a))) # label(replacement). [assumption]. 14 ->_s0(c,k(g(b))) # label(replacement). [assumption]. 15 -->*_s0(h(f(x)),k(g(b))) | ->_s0(f(x),g(x)) # label(replacement). [clausify(5)]. 16 ->_s0(h(f(a)),c) # label(replacement). [assumption]. 17 ->_s0(h(x),k(x)) # label(replacement). [assumption]. 18 ->*_s0(x,x) # label(reflexivity). [assumption]. 19 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(6)]. 20 -->*_s0(h(f(a)),k(g(b))) # label(goal) # answer(goal). [deny(7)]. end_of_list. formulas(demodulators). end_of_list. ============================== end of clauses for search ============= ============================== SEARCH ================================ % Starting search at 0.01 seconds. given #1 (I,wt=8): 8 -->_s0(x,y) | ->_s0(f(x),f(y)) # label(congruence). [clausify(1)]. given #2 (I,wt=8): 9 -->_s0(x,y) | ->_s0(h(x),h(y)) # label(congruence). [clausify(2)]. given #3 (I,wt=8): 10 -->_s0(x,y) | ->_s0(g(x),g(y)) # label(congruence). [clausify(3)]. given #4 (I,wt=8): 11 -->_s0(x,y) | ->_s0(k(x),k(y)) # label(congruence). [clausify(4)]. given #5 (I,wt=3): 12 ->_s0(a,b) # label(replacement). [assumption]. given #6 (I,wt=5): 13 ->_s0(c,k(f(a))) # label(replacement). [assumption]. given #7 (I,wt=5): 14 ->_s0(c,k(g(b))) # label(replacement). [assumption]. given #8 (I,wt=12): 15 -->*_s0(h(f(x)),k(g(b))) | ->_s0(f(x),g(x)) # label(replacement). [clausify(5)]. given #9 (I,wt=5): 16 ->_s0(h(f(a)),c) # label(replacement). [assumption]. given #10 (I,wt=5): 17 ->_s0(h(x),k(x)) # label(replacement). [assumption]. given #11 (I,wt=3): 18 ->*_s0(x,x) # label(reflexivity). [assumption]. given #12 (I,wt=9): 19 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(6)]. given #13 (I,wt=7): 20 -->*_s0(h(f(a)),k(g(b))) # label(goal) # answer(goal). [deny(7)]. ============================== PROOF ================================= % Proof 1 at 0.01 (+ 0.00) seconds: goal. % Length of proof is 10. % Level of proof is 3. % Maximum clause weight is 9.000. % Given clauses 13. 6 ->_s0(x,y) & ->*_s0(y,z) -> ->*_s0(x,z) # label(transitivity) # label(non_clause). [assumption]. 7 ->*_s0(h(f(a)),k(g(b))) # label(goal) # label(non_clause) # label(goal). [goal]. 14 ->_s0(c,k(g(b))) # label(replacement). [assumption]. 16 ->_s0(h(f(a)),c) # label(replacement). [assumption]. 18 ->*_s0(x,x) # label(reflexivity). [assumption]. 19 -->_s0(x,y) | -->*_s0(y,z) | ->*_s0(x,z) # label(transitivity). [clausify(6)]. 20 -->*_s0(h(f(a)),k(g(b))) # label(goal) # answer(goal). [deny(7)]. 43 ->*_s0(c,k(g(b))). [ur(19,a,14,a,b,18,a)]. 49 -->*_s0(c,k(g(b))) # answer(goal). [ur(19,a,16,a,c,20,a)]. 50 $F # answer(goal). [resolve(49,a,43,a)]. ============================== end of proof ========================== ============================== STATISTICS ============================ Given=13. Generated=42. Kept=42. proofs=1. Usable=13. Sos=25. Demods=0. Limbo=3, Disabled=13. Hints=0. Kept_by_rule=0, Deleted_by_rule=0. Forward_subsumed=0. Back_subsumed=0. Sos_limit_deleted=0. Sos_displaced=0. Sos_removed=0. New_demodulators=0 (0 lex), Back_demodulated=0. Back_unit_deleted=0. Demod_attempts=0. Demod_rewrites=0. Res_instance_prunes=0. Para_instance_prunes=0. Basic_paramod_prunes=0. Nonunit_fsub_feature_tests=0. Nonunit_bsub_feature_tests=7. Megabytes=0.10. User_CPU=0.01, System_CPU=0.00, Wall_clock=0. ============================== end of statistics ===================== ============================== end of search ========================= THEOREM PROVED Exiting with 1 proof. Process 3256793 exit (max_proofs) Tue Jul 30 08:59:55 2024 The problem is feasible.