Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | minus : symb | quot : symb | s : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.minus => 2 | M.quot => 2 | M.s => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition minus x2 x1 := F0 M.minus (Vcons x2 (Vcons x1 Vnil)). Definition quot x2 x1 := F0 M.quot (Vcons x2 (Vcons x1 Vnil)). Definition s x1 := F0 M.s (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.minus (V0 0) S0._0_1) (V0 0) :: R0 (S0.minus (S0.s (V0 0)) (S0.s (V0 1))) (S0.minus (V0 0) (V0 1)) :: R0 (S0.quot S0._0_1 (S0.s (V0 0))) S0._0_1 :: R0 (S0.quot (S0.s (V0 0)) (S0.s (V0 1))) (S0.s (S0.quot (S0.minus (V0 0) (V0 1)) (S0.s (V0 1)))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hminus x2 x1 := F1 (hd_symb s1_p M.minus) (Vcons x2 (Vcons x1 Vnil)). Definition minus x2 x1 := F1 (int_symb s1_p M.minus) (Vcons x2 (Vcons x1 Vnil)). Definition hquot x2 x1 := F1 (hd_symb s1_p M.quot) (Vcons x2 (Vcons x1 Vnil)). Definition quot x2 x1 := F1 (int_symb s1_p M.quot) (Vcons x2 (Vcons x1 Vnil)). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hminus (S1.s (V1 0)) (S1.s (V1 1))) (S1.hminus (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hquot (S1.s (V1 0)) (S1.s (V1 1))) (S1.hminus (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hquot (S1.s (V1 0)) (S1.s (V1 1))) (S1.hquot (S1.minus (V1 0) (V1 1)) (S1.s (V1 1))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.minus) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.minus) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (1%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.quot) => nil | (int_symb M.quot) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.minus) => nil | (int_symb M.minus) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (3%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.quot) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.quot) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. right. PI1.prove_termination. termination_trivial. left. co_scc. right. PI2.prove_termination. termination_trivial. Qed.