Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | add : symb | app : symb | eq : symb | false : symb | if_min : symb | if_minsort : symb | if_rm : symb | le : symb | min : symb | minsort : symb | nil : symb | rm : symb | s : symb | true : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.add => 2 | M.app => 2 | M.eq => 2 | M.false => 0 | M.if_min => 2 | M.if_minsort => 3 | M.if_rm => 3 | M.le => 2 | M.min => 1 | M.minsort => 2 | M.nil => 0 | M.rm => 2 | M.s => 1 | M.true => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition add x2 x1 := F0 M.add (Vcons x2 (Vcons x1 Vnil)). Definition app x2 x1 := F0 M.app (Vcons x2 (Vcons x1 Vnil)). Definition eq x2 x1 := F0 M.eq (Vcons x2 (Vcons x1 Vnil)). Definition false := F0 M.false Vnil. Definition if_min x2 x1 := F0 M.if_min (Vcons x2 (Vcons x1 Vnil)). Definition if_minsort x3 x2 x1 := F0 M.if_minsort (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition if_rm x3 x2 x1 := F0 M.if_rm (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition le x2 x1 := F0 M.le (Vcons x2 (Vcons x1 Vnil)). Definition min x1 := F0 M.min (Vcons x1 Vnil). Definition minsort x2 x1 := F0 M.minsort (Vcons x2 (Vcons x1 Vnil)). Definition nil := F0 M.nil Vnil. Definition rm x2 x1 := F0 M.rm (Vcons x2 (Vcons x1 Vnil)). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition true := F0 M.true Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.eq S0._0_1 S0._0_1) S0.true :: R0 (S0.eq S0._0_1 (S0.s (V0 0))) S0.false :: R0 (S0.eq (S0.s (V0 0)) S0._0_1) S0.false :: R0 (S0.eq (S0.s (V0 0)) (S0.s (V0 1))) (S0.eq (V0 0) (V0 1)) :: R0 (S0.le S0._0_1 (V0 0)) S0.true :: R0 (S0.le (S0.s (V0 0)) S0._0_1) S0.false :: R0 (S0.le (S0.s (V0 0)) (S0.s (V0 1))) (S0.le (V0 0) (V0 1)) :: R0 (S0.app S0.nil (V0 0)) (V0 0) :: R0 (S0.app (S0.add (V0 0) (V0 1)) (V0 2)) (S0.add (V0 0) (S0.app (V0 1) (V0 2))) :: R0 (S0.min (S0.add (V0 0) S0.nil)) (V0 0) :: R0 (S0.min (S0.add (V0 0) (S0.add (V0 1) (V0 2)))) (S0.if_min (S0.le (V0 0) (V0 1)) (S0.add (V0 0) (S0.add (V0 1) (V0 2)))) :: R0 (S0.if_min S0.true (S0.add (V0 0) (S0.add (V0 1) (V0 2)))) (S0.min (S0.add (V0 0) (V0 2))) :: R0 (S0.if_min S0.false (S0.add (V0 0) (S0.add (V0 1) (V0 2)))) (S0.min (S0.add (V0 1) (V0 2))) :: R0 (S0.rm (V0 0) S0.nil) S0.nil :: R0 (S0.rm (V0 0) (S0.add (V0 1) (V0 2))) (S0.if_rm (S0.eq (V0 0) (V0 1)) (V0 0) (S0.add (V0 1) (V0 2))) :: R0 (S0.if_rm S0.true (V0 0) (S0.add (V0 1) (V0 2))) (S0.rm (V0 0) (V0 2)) :: R0 (S0.if_rm S0.false (V0 0) (S0.add (V0 1) (V0 2))) (S0.add (V0 1) (S0.rm (V0 0) (V0 2))) :: R0 (S0.minsort S0.nil S0.nil) S0.nil :: R0 (S0.minsort (S0.add (V0 0) (V0 1)) (V0 2)) (S0.if_minsort (S0.eq (V0 0) (S0.min (S0.add (V0 0) (V0 1)))) (S0.add (V0 0) (V0 1)) (V0 2)) :: R0 (S0.if_minsort S0.true (S0.add (V0 0) (V0 1)) (V0 2)) (S0.add (V0 0) (S0.minsort (S0.app (S0.rm (V0 0) (V0 1)) (V0 2)) S0.nil)) :: R0 (S0.if_minsort S0.false (S0.add (V0 0) (V0 1)) (V0 2)) (S0.minsort (V0 1) (S0.add (V0 0) (V0 2))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition hadd x2 x1 := F1 (hd_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition add x2 x1 := F1 (int_symb s1_p M.add) (Vcons x2 (Vcons x1 Vnil)). Definition happ x2 x1 := F1 (hd_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition app x2 x1 := F1 (int_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition heq x2 x1 := F1 (hd_symb s1_p M.eq) (Vcons x2 (Vcons x1 Vnil)). Definition eq x2 x1 := F1 (int_symb s1_p M.eq) (Vcons x2 (Vcons x1 Vnil)). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hif_min x2 x1 := F1 (hd_symb s1_p M.if_min) (Vcons x2 (Vcons x1 Vnil)). Definition if_min x2 x1 := F1 (int_symb s1_p M.if_min) (Vcons x2 (Vcons x1 Vnil)). Definition hif_minsort x3 x2 x1 := F1 (hd_symb s1_p M.if_minsort) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition if_minsort x3 x2 x1 := F1 (int_symb s1_p M.if_minsort) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hif_rm x3 x2 x1 := F1 (hd_symb s1_p M.if_rm) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition if_rm x3 x2 x1 := F1 (int_symb s1_p M.if_rm) (Vcons x3 (Vcons x2 (Vcons x1 Vnil))). Definition hle x2 x1 := F1 (hd_symb s1_p M.le) (Vcons x2 (Vcons x1 Vnil)). Definition le x2 x1 := F1 (int_symb s1_p M.le) (Vcons x2 (Vcons x1 Vnil)). Definition hmin x1 := F1 (hd_symb s1_p M.min) (Vcons x1 Vnil). Definition min x1 := F1 (int_symb s1_p M.min) (Vcons x1 Vnil). Definition hminsort x2 x1 := F1 (hd_symb s1_p M.minsort) (Vcons x2 (Vcons x1 Vnil)). Definition minsort x2 x1 := F1 (int_symb s1_p M.minsort) (Vcons x2 (Vcons x1 Vnil)). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hrm x2 x1 := F1 (hd_symb s1_p M.rm) (Vcons x2 (Vcons x1 Vnil)). Definition rm x2 x1 := F1 (int_symb s1_p M.rm) (Vcons x2 (Vcons x1 Vnil)). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.happ (S1.add (V1 0) (V1 1)) (V1 2)) (S1.happ (V1 1) (V1 2)) :: nil) :: ( R1 (S1.hif_minsort (S1.true) (S1.add (V1 0) (V1 1)) (V1 2)) (S1.happ (S1.rm (V1 0) (V1 1)) (V1 2)) :: nil) :: ( R1 (S1.hle (S1.s (V1 0)) (S1.s (V1 1))) (S1.hle (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hmin (S1.add (V1 0) (S1.add (V1 1) (V1 2)))) (S1.hle (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hmin (S1.add (V1 0) (S1.add (V1 1) (V1 2)))) (S1.hif_min (S1.le (V1 0) (V1 1)) (S1.add (V1 0) (S1.add (V1 1) (V1 2)))) :: R1 (S1.hif_min (S1.true) (S1.add (V1 0) (S1.add (V1 1) (V1 2)))) (S1.hmin (S1.add (V1 0) (V1 2))) :: R1 (S1.hif_min (S1.false) (S1.add (V1 0) (S1.add (V1 1) (V1 2)))) (S1.hmin (S1.add (V1 1) (V1 2))) :: nil) :: ( R1 (S1.hminsort (S1.add (V1 0) (V1 1)) (V1 2)) (S1.hmin (S1.add (V1 0) (V1 1))) :: nil) :: ( R1 (S1.heq (S1.s (V1 0)) (S1.s (V1 1))) (S1.heq (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hminsort (S1.add (V1 0) (V1 1)) (V1 2)) (S1.heq (V1 0) (S1.min (S1.add (V1 0) (V1 1)))) :: nil) :: ( R1 (S1.hrm (V1 0) (S1.add (V1 1) (V1 2))) (S1.heq (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hrm (V1 0) (S1.add (V1 1) (V1 2))) (S1.hif_rm (S1.eq (V1 0) (V1 1)) (V1 0) (S1.add (V1 1) (V1 2))) :: R1 (S1.hif_rm (S1.true) (V1 0) (S1.add (V1 1) (V1 2))) (S1.hrm (V1 0) (V1 2)) :: R1 (S1.hif_rm (S1.false) (V1 0) (S1.add (V1 1) (V1 2))) (S1.hrm (V1 0) (V1 2)) :: nil) :: ( R1 (S1.hif_minsort (S1.true) (S1.add (V1 0) (V1 1)) (V1 2)) (S1.hrm (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hif_minsort (S1.true) (S1.add (V1 0) (V1 1)) (V1 2)) (S1.hminsort (S1.app (S1.rm (V1 0) (V1 1)) (V1 2)) (S1.nil)) :: R1 (S1.hminsort (S1.add (V1 0) (V1 1)) (V1 2)) (S1.hif_minsort (S1.eq (V1 0) (S1.min (S1.add (V1 0) (V1 1)))) (S1.add (V1 0) (V1 1)) (V1 2)) :: R1 (S1.hif_minsort (S1.false) (S1.add (V1 0) (V1 1)) (V1 2)) (S1.hminsort (V1 1) (S1.add (V1 0) (V1 2))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.eq) => nil | (int_symb M.eq) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (1%Z, Vnil) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (3%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => (2%Z, Vnil) :: nil | (hd_symb M.le) => nil | (int_symb M.le) => (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.app) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.min) => nil | (int_symb M.min) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.if_min) => nil | (int_symb M.if_min) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rm) => nil | (int_symb M.rm) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_rm) => nil | (int_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.minsort) => nil | (int_symb M.minsort) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_minsort) => nil | (int_symb M.if_minsort) => (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.eq) => nil | (int_symb M.eq) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (2%Z, Vnil) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => (3%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.le) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.le) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.min) => nil | (int_symb M.min) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.if_min) => nil | (int_symb M.if_min) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rm) => nil | (int_symb M.rm) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_rm) => nil | (int_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.minsort) => nil | (int_symb M.minsort) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_minsort) => nil | (int_symb M.if_minsort) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.eq) => nil | (int_symb M.eq) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.le) => nil | (int_symb M.le) => nil | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.min) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.min) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.if_min) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.if_min) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rm) => nil | (int_symb M.rm) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_rm) => nil | (int_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.minsort) => nil | (int_symb M.minsort) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_minsort) => nil | (int_symb M.if_minsort) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.eq) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.eq) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (2%Z, Vnil) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => (3%Z, Vnil) :: nil | (hd_symb M.s) => nil | (int_symb M.s) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.le) => nil | (int_symb M.le) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.min) => nil | (int_symb M.min) => (1%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.if_min) => nil | (int_symb M.if_min) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rm) => nil | (int_symb M.rm) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_rm) => nil | (int_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.minsort) => nil | (int_symb M.minsort) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_minsort) => nil | (int_symb M.if_minsort) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* polynomial interpretation 5 *) Module PIS5 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.eq) => nil | (int_symb M.eq) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.le) => nil | (int_symb M.le) => nil | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.min) => nil | (int_symb M.min) => (2%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.if_min) => nil | (int_symb M.if_min) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rm) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.rm) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.minsort) => nil | (int_symb M.minsort) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_minsort) => nil | (int_symb M.if_minsort) => (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS5. Module PI5 := PolyInt PIS5. (* graph decomposition 2 *) Definition cs2 : list (list (@ATrs.rule s1)) := ( R1 (S1.hrm (V1 0) (S1.add (V1 1) (V1 2))) (S1.hif_rm (S1.eq (V1 0) (V1 1)) (V1 0) (S1.add (V1 1) (V1 2))) :: nil) :: nil. (* polynomial interpretation 6 *) Module PIS6 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.eq) => nil | (int_symb M.eq) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => (3%Z, Vnil) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (3%Z, (Vcons 0 Vnil)) :: (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.le) => nil | (int_symb M.le) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.min) => nil | (int_symb M.min) => (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.if_min) => nil | (int_symb M.if_min) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rm) => nil | (int_symb M.rm) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_rm) => nil | (int_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.minsort) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (int_symb M.minsort) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_minsort) => (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (int_symb M.if_minsort) => (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS6. Module PI6 := PolyInt PIS6. (* polynomial interpretation 7 *) Module PIS7 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.eq) => nil | (int_symb M.eq) => nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.true) => nil | (int_symb M.true) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.le) => nil | (int_symb M.le) => (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.add) => nil | (int_symb M.add) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.min) => nil | (int_symb M.min) => (2%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.if_min) => nil | (int_symb M.if_min) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.rm) => nil | (int_symb M.rm) => (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_rm) => nil | (int_symb M.if_rm) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil | (hd_symb M.minsort) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.minsort) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.if_minsort) => (1%Z, (Vcons 0 (Vcons 0 (Vcons 0 Vnil)))) :: (1%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: nil | (int_symb M.if_minsort) => (2%Z, (Vcons 0 (Vcons 1 (Vcons 0 Vnil)))) :: (2%Z, (Vcons 0 (Vcons 0 (Vcons 1 Vnil)))) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS7. Module PI7 := PolyInt PIS7. (* graph decomposition 3 *) Definition cs3 : list (list (@ATrs.rule s1)) := ( R1 (S1.hif_minsort (S1.false) (S1.add (V1 0) (V1 1)) (V1 2)) (S1.hminsort (V1 1) (S1.add (V1 0) (V1 2))) :: nil) :: nil. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. right. PI1.prove_termination. termination_trivial. left. co_scc. right. PI2.prove_termination. termination_trivial. left. co_scc. right. PI3.prove_termination. termination_trivial. left. co_scc. right. PI4.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI5.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs2; subst D; subst R. dpg_unif_N_correct. left. co_scc. left. co_scc. right. PI6.prove_termination. PI7.prove_termination. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs3; subst D; subst R. dpg_unif_N_correct. left. co_scc. Qed.