Require terminaison. Require Relations. Require term. Require List. Require equational_theory. Require rpo_extension. Require equational_extension. Require closure_extension. Require term_extension. Require dp. Require Inclusion. Require or_ext_generated. Require ZArith. Require ring_extention. Require Zwf. Require Inverse_Image. Require matrix. Require more_list_extention. Import List. Import ZArith. Set Implicit Arguments. Module algebra. Module F <:term.Signature. Inductive symb : Set := (* id_eq *) | id_eq : symb (* id_edge *) | id_edge : symb (* id_false *) | id_false : symb (* id_true *) | id_true : symb (* id_if_reach_1 *) | id_if_reach_1 : symb (* id_union *) | id_union : symb (* id_0 *) | id_0 : symb (* id_reach *) | id_reach : symb (* id_or *) | id_or : symb (* id_s *) | id_s : symb (* id_if_reach_2 *) | id_if_reach_2 : symb (* id_empty *) | id_empty : symb . Definition symb_eq_bool (f1 f2:symb) : bool := match f1,f2 with | id_eq,id_eq => true | id_edge,id_edge => true | id_false,id_false => true | id_true,id_true => true | id_if_reach_1,id_if_reach_1 => true | id_union,id_union => true | id_0,id_0 => true | id_reach,id_reach => true | id_or,id_or => true | id_s,id_s => true | id_if_reach_2,id_if_reach_2 => true | id_empty,id_empty => true | _,_ => false end. (* Proof of decidability of equality over symb *) Definition symb_eq_bool_ok(f1 f2:symb) : match symb_eq_bool f1 f2 with | true => f1 = f2 | false => f1 <> f2 end. Proof. intros f1 f2. refine match f1 as u1,f2 as u2 return match symb_eq_bool u1 u2 return Prop with | true => u1 = u2 | false => u1 <> u2 end with | id_eq,id_eq => refl_equal _ | id_edge,id_edge => refl_equal _ | id_false,id_false => refl_equal _ | id_true,id_true => refl_equal _ | id_if_reach_1,id_if_reach_1 => refl_equal _ | id_union,id_union => refl_equal _ | id_0,id_0 => refl_equal _ | id_reach,id_reach => refl_equal _ | id_or,id_or => refl_equal _ | id_s,id_s => refl_equal _ | id_if_reach_2,id_if_reach_2 => refl_equal _ | id_empty,id_empty => refl_equal _ | _,_ => _ end;intros abs;discriminate. Defined. Definition arity (f:symb) := match f with | id_eq => term.Free 2 | id_edge => term.Free 3 | id_false => term.Free 0 | id_true => term.Free 0 | id_if_reach_1 => term.Free 5 | id_union => term.Free 2 | id_0 => term.Free 0 | id_reach => term.Free 4 | id_or => term.Free 2 | id_s => term.Free 1 | id_if_reach_2 => term.Free 5 | id_empty => term.Free 0 end. Definition symb_order (f1 f2:symb) : bool := match f1,f2 with | id_eq,id_eq => true | id_eq,id_edge => false | id_eq,id_false => false | id_eq,id_true => false | id_eq,id_if_reach_1 => false | id_eq,id_union => false | id_eq,id_0 => false | id_eq,id_reach => false | id_eq,id_or => false | id_eq,id_s => false | id_eq,id_if_reach_2 => false | id_eq,id_empty => false | id_edge,id_eq => true | id_edge,id_edge => true | id_edge,id_false => false | id_edge,id_true => false | id_edge,id_if_reach_1 => false | id_edge,id_union => false | id_edge,id_0 => false | id_edge,id_reach => false | id_edge,id_or => false | id_edge,id_s => false | id_edge,id_if_reach_2 => false | id_edge,id_empty => false | id_false,id_eq => true | id_false,id_edge => true | id_false,id_false => true | id_false,id_true => false | id_false,id_if_reach_1 => false | id_false,id_union => false | id_false,id_0 => false | id_false,id_reach => false | id_false,id_or => false | id_false,id_s => false | id_false,id_if_reach_2 => false | id_false,id_empty => false | id_true,id_eq => true | id_true,id_edge => true | id_true,id_false => true | id_true,id_true => true | id_true,id_if_reach_1 => false | id_true,id_union => false | id_true,id_0 => false | id_true,id_reach => false | id_true,id_or => false | id_true,id_s => false | id_true,id_if_reach_2 => false | id_true,id_empty => false | id_if_reach_1,id_eq => true | id_if_reach_1,id_edge => true | id_if_reach_1,id_false => true | id_if_reach_1,id_true => true | id_if_reach_1,id_if_reach_1 => true | id_if_reach_1,id_union => false | id_if_reach_1,id_0 => false | id_if_reach_1,id_reach => false | id_if_reach_1,id_or => false | id_if_reach_1,id_s => false | id_if_reach_1,id_if_reach_2 => false | id_if_reach_1,id_empty => false | id_union,id_eq => true | id_union,id_edge => true | id_union,id_false => true | id_union,id_true => true | id_union,id_if_reach_1 => true | id_union,id_union => true | id_union,id_0 => false | id_union,id_reach => false | id_union,id_or => false | id_union,id_s => false | id_union,id_if_reach_2 => false | id_union,id_empty => false | id_0,id_eq => true | id_0,id_edge => true | id_0,id_false => true | id_0,id_true => true | id_0,id_if_reach_1 => true | id_0,id_union => true | id_0,id_0 => true | id_0,id_reach => false | id_0,id_or => false | id_0,id_s => false | id_0,id_if_reach_2 => false | id_0,id_empty => false | id_reach,id_eq => true | id_reach,id_edge => true | id_reach,id_false => true | id_reach,id_true => true | id_reach,id_if_reach_1 => true | id_reach,id_union => true | id_reach,id_0 => true | id_reach,id_reach => true | id_reach,id_or => false | id_reach,id_s => false | id_reach,id_if_reach_2 => false | id_reach,id_empty => false | id_or,id_eq => true | id_or,id_edge => true | id_or,id_false => true | id_or,id_true => true | id_or,id_if_reach_1 => true | id_or,id_union => true | id_or,id_0 => true | id_or,id_reach => true | id_or,id_or => true | id_or,id_s => false | id_or,id_if_reach_2 => false | id_or,id_empty => false | id_s,id_eq => true | id_s,id_edge => true | id_s,id_false => true | id_s,id_true => true | id_s,id_if_reach_1 => true | id_s,id_union => true | id_s,id_0 => true | id_s,id_reach => true | id_s,id_or => true | id_s,id_s => true | id_s,id_if_reach_2 => false | id_s,id_empty => false | id_if_reach_2,id_eq => true | id_if_reach_2,id_edge => true | id_if_reach_2,id_false => true | id_if_reach_2,id_true => true | id_if_reach_2,id_if_reach_1 => true | id_if_reach_2,id_union => true | id_if_reach_2,id_0 => true | id_if_reach_2,id_reach => true | id_if_reach_2,id_or => true | id_if_reach_2,id_s => true | id_if_reach_2,id_if_reach_2 => true | id_if_reach_2,id_empty => false | id_empty,id_eq => true | id_empty,id_edge => true | id_empty,id_false => true | id_empty,id_true => true | id_empty,id_if_reach_1 => true | id_empty,id_union => true | id_empty,id_0 => true | id_empty,id_reach => true | id_empty,id_or => true | id_empty,id_s => true | id_empty,id_if_reach_2 => true | id_empty,id_empty => true end. Module Symb. Definition A := symb. Definition eq_A := @eq A. Definition eq_proof : equivalence A eq_A. Proof. constructor. red ;reflexivity . red ;intros ;transitivity y ;assumption. red ;intros ;symmetry ;assumption. Defined. Add Relation A eq_A reflexivity proved by (@equiv_refl _ _ eq_proof) symmetry proved by (@equiv_sym _ _ eq_proof) transitivity proved by (@equiv_trans _ _ eq_proof) as EQA . Definition eq_bool := symb_eq_bool. Definition eq_bool_ok := symb_eq_bool_ok. End Symb. Export Symb. End F. Module Alg := term.Make'(F)(term_extension.IntVars). Module Alg_ext := term_extension.Make(Alg). Module EQT := equational_theory.Make(Alg). Module EQT_ext := equational_extension.Make(EQT). End algebra. Module R_xml_0_deep_rew. Inductive R_xml_0_rules : algebra.Alg.term ->algebra.Alg.term ->Prop := (* eq(0,0) -> true *) | R_xml_0_rule_0 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_true nil) (algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* eq(0,s(x_)) -> false *) | R_xml_0_rule_1 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_false nil) (algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)) (* eq(s(x_),0) -> false *) | R_xml_0_rule_2 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_false nil) (algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::(algebra.Alg.Term algebra.F.id_0 nil)::nil)) (* eq(s(x_),s(y_)) -> eq(x_,y_) *) | R_xml_0_rule_3 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::nil)) (algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::(algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil)) (* or(true,y_) -> true *) | R_xml_0_rule_4 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_true nil) (algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_true nil)::(algebra.Alg.Var 2)::nil)) (* or(false,y_) -> y_ *) | R_xml_0_rule_5 : R_xml_0_rules (algebra.Alg.Var 2) (algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_false nil)::(algebra.Alg.Var 2)::nil)) (* union(empty,h_) -> h_ *) | R_xml_0_rule_6 : R_xml_0_rules (algebra.Alg.Var 3) (algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Term algebra.F.id_empty nil)::(algebra.Alg.Var 3)::nil)) (* union(edge(x_,y_,i_),h_) -> edge(x_,y_,union(i_,h_)) *) | R_xml_0_rule_7 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Var 4)::(algebra.Alg.Var 3)::nil))::nil)) (algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Var 4)::nil))::(algebra.Alg.Var 3)::nil)) (* reach(x_,y_,empty,h_) -> false *) | R_xml_0_rule_8 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_false nil) (algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_empty nil):: (algebra.Alg.Var 3)::nil)) (* reach(x_,y_,edge(u_,v_,i_),h_) -> if_reach_1(eq(x_,u_),x_,y_,edge(u_,v_,i_),h_) *) | R_xml_0_rule_9 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Var 1):: (algebra.Alg.Var 5)::nil))::(algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5)::(algebra.Alg.Var 6):: (algebra.Alg.Var 4)::nil))::(algebra.Alg.Var 3)::nil)) (algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5)::(algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)) (* if_reach_1(true,x_,y_,edge(u_,v_,i_),h_) -> if_reach_2(eq(y_,v_),x_,y_,edge(u_,v_,i_),h_) *) | R_xml_0_rule_10 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Var 2):: (algebra.Alg.Var 6)::nil))::(algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5)::(algebra.Alg.Var 6):: (algebra.Alg.Var 4)::nil))::(algebra.Alg.Var 3)::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_true nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)) (* if_reach_2(true,x_,y_,edge(u_,v_,i_),h_) -> true *) | R_xml_0_rule_11 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_true nil) (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_true nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)) (* if_reach_2(false,x_,y_,edge(u_,v_,i_),h_) -> or(reach(x_,y_,i_,h_),reach(v_,y_,union(i_,h_),empty)) *) | R_xml_0_rule_12 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Var 4):: (algebra.Alg.Var 3)::nil))::(algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 6):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Var 4)::(algebra.Alg.Var 3)::nil)):: (algebra.Alg.Term algebra.F.id_empty nil)::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_false nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)) (* if_reach_1(false,x_,y_,edge(u_,v_,i_),h_) -> reach(x_,y_,i_,edge(u_,v_,h_)) *) | R_xml_0_rule_13 : R_xml_0_rules (algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Var 4):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 3)::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_false nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)) . Definition R_xml_0_rule_as_list_0 := ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_0 nil)::nil)), (algebra.Alg.Term algebra.F.id_true nil))::nil. Definition R_xml_0_rule_as_list_1 := ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_0 nil)::(algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::nil)), (algebra.Alg.Term algebra.F.id_false nil))::R_xml_0_rule_as_list_0. Definition R_xml_0_rule_as_list_2 := ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::(algebra.Alg.Term algebra.F.id_0 nil)::nil)),(algebra.Alg.Term algebra.F.id_false nil)):: R_xml_0_rule_as_list_1. Definition R_xml_0_rule_as_list_3 := ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 1)::nil))::(algebra.Alg.Term algebra.F.id_s ((algebra.Alg.Var 2)::nil))::nil)), (algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::nil)))::R_xml_0_rule_as_list_2. Definition R_xml_0_rule_as_list_4 := ((algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_true nil)::(algebra.Alg.Var 2)::nil)), (algebra.Alg.Term algebra.F.id_true nil))::R_xml_0_rule_as_list_3. Definition R_xml_0_rule_as_list_5 := ((algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_false nil)::(algebra.Alg.Var 2)::nil)),(algebra.Alg.Var 2)):: R_xml_0_rule_as_list_4. Definition R_xml_0_rule_as_list_6 := ((algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Term algebra.F.id_empty nil)::(algebra.Alg.Var 3)::nil)),(algebra.Alg.Var 3)):: R_xml_0_rule_as_list_5. Definition R_xml_0_rule_as_list_7 := ((algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Var 4)::nil))::(algebra.Alg.Var 3)::nil)), (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Var 4)::(algebra.Alg.Var 3)::nil))::nil))):: R_xml_0_rule_as_list_6. Definition R_xml_0_rule_as_list_8 := ((algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_empty nil):: (algebra.Alg.Var 3)::nil)),(algebra.Alg.Term algebra.F.id_false nil)):: R_xml_0_rule_as_list_7. Definition R_xml_0_rule_as_list_9 := ((algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5)::(algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)), (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Var 1)::(algebra.Alg.Var 5)::nil)):: (algebra.Alg.Var 1)::(algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5)::(algebra.Alg.Var 6):: (algebra.Alg.Var 4)::nil))::(algebra.Alg.Var 3)::nil))):: R_xml_0_rule_as_list_8. Definition R_xml_0_rule_as_list_10 := ((algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_true nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)), (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_eq ((algebra.Alg.Var 2)::(algebra.Alg.Var 6)::nil)):: (algebra.Alg.Var 1)::(algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5)::(algebra.Alg.Var 6):: (algebra.Alg.Var 4)::nil))::(algebra.Alg.Var 3)::nil))):: R_xml_0_rule_as_list_9. Definition R_xml_0_rule_as_list_11 := ((algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_true nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)),(algebra.Alg.Term algebra.F.id_true nil)):: R_xml_0_rule_as_list_10. Definition R_xml_0_rule_as_list_12 := ((algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_false nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)), (algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1)::(algebra.Alg.Var 2)::(algebra.Alg.Var 4):: (algebra.Alg.Var 3)::nil))::(algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 6)::(algebra.Alg.Var 2)::(algebra.Alg.Term algebra.F.id_union ((algebra.Alg.Var 4)::(algebra.Alg.Var 3)::nil)):: (algebra.Alg.Term algebra.F.id_empty nil)::nil))::nil))):: R_xml_0_rule_as_list_11. Definition R_xml_0_rule_as_list_13 := ((algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_false nil)::(algebra.Alg.Var 1)::(algebra.Alg.Var 2):: (algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5):: (algebra.Alg.Var 6)::(algebra.Alg.Var 4)::nil)):: (algebra.Alg.Var 3)::nil)), (algebra.Alg.Term algebra.F.id_reach ((algebra.Alg.Var 1):: (algebra.Alg.Var 2)::(algebra.Alg.Var 4)::(algebra.Alg.Term algebra.F.id_edge ((algebra.Alg.Var 5)::(algebra.Alg.Var 6):: (algebra.Alg.Var 3)::nil))::nil)))::R_xml_0_rule_as_list_12. Definition R_xml_0_rule_as_list := R_xml_0_rule_as_list_13. Lemma R_xml_0_rules_included : forall l r, R_xml_0_rules r l <-> In (l,r) R_xml_0_rule_as_list. Proof. intros l r. constructor. intros H. case H;clear H; (apply (more_list.mem_impl_in (@eq (algebra.Alg.term*algebra.Alg.term))); [tauto|idtac]); match goal with | |- _ _ _ ?t ?l => let u := fresh "u" in (generalize (more_list.mem_bool_ok _ _ algebra.Alg_ext.eq_term_term_bool_ok t l); set (u:=more_list.mem_bool algebra.Alg_ext.eq_term_term_bool t l) in *; vm_compute in u|-;unfold u in *;clear u;intros H;refine H) end . intros H. vm_compute in H|-. rewrite <- or_ext_generated.or15_equiv in H|-. case H;clear H;intros H. injection H;intros ;subst;constructor 14. injection H;intros ;subst;constructor 13. injection H;intros ;subst;constructor 12. injection H;intros ;subst;constructor 11. injection H;intros ;subst;constructor 10. injection H;intros ;subst;constructor 9. injection H;intros ;subst;constructor 8. injection H;intros ;subst;constructor 7. injection H;intros ;subst;constructor 6. injection H;intros ;subst;constructor 5. injection H;intros ;subst;constructor 4. injection H;intros ;subst;constructor 3. injection H;intros ;subst;constructor 2. injection H;intros ;subst;constructor 1. elim H. Qed. Lemma R_xml_0_non_var : forall x t, ~R_xml_0_rules t (algebra.EQT.T.Var x). Proof. intros x t H. inversion H. Qed. Lemma R_xml_0_reg : forall s t, (R_xml_0_rules s t) -> forall x, In x (algebra.Alg.var_list s) ->In x (algebra.Alg.var_list t). Proof. intros s t H. inversion H;intros x Hx; (apply (more_list.mem_impl_in (@eq algebra.Alg.variable));[tauto|idtac]); apply (more_list.in_impl_mem (@eq algebra.Alg.variable)) in Hx; vm_compute in Hx|-*;tauto. Qed. Inductive and_6 (x8 x9 x10 x11 x12 x13:Prop) : Prop := | conj_6 : x8->x9->x10->x11->x12->x13->and_6 x8 x9 x10 x11 x12 x13 . Lemma are_constuctors_of_R_xml_0 : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> and_6 (forall x9 x11 x13, t = (algebra.Alg.Term algebra.F.id_edge (x9::x11::x13::nil)) -> exists x8, exists x10, exists x12, t' = (algebra.Alg.Term algebra.F.id_edge (x8::x10:: x12::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x8 x9)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x10 x11)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x12 x13)) (t = (algebra.Alg.Term algebra.F.id_false nil) -> t' = (algebra.Alg.Term algebra.F.id_false nil)) (t = (algebra.Alg.Term algebra.F.id_true nil) -> t' = (algebra.Alg.Term algebra.F.id_true nil)) (t = (algebra.Alg.Term algebra.F.id_0 nil) -> t' = (algebra.Alg.Term algebra.F.id_0 nil)) (forall x9, t = (algebra.Alg.Term algebra.F.id_s (x9::nil)) -> exists x8, t' = (algebra.Alg.Term algebra.F.id_s (x8::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x8 x9)) (t = (algebra.Alg.Term algebra.F.id_empty nil) -> t' = (algebra.Alg.Term algebra.F.id_empty nil)). Proof. intros t t' H. induction H as [|y IH z z_to_y] using closure_extension.refl_trans_clos_ind2. constructor 1. intros x9 x11 x13 H;exists x9;exists x11;exists x13;intuition; constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros H;intuition;constructor 1. intros x9 H;exists x9;intuition;constructor 1. intros H;intuition;constructor 1. inversion z_to_y as [t1 t2 H H0 H1|f l1 l2 H0 H H2];clear z_to_y;subst. inversion H as [t1 t2 sigma H2 H1 H0];clear H IH;subst;inversion H2; clear ;constructor;try (intros until 0 );clear ;intros abs; discriminate abs. destruct IH as [H_id_edge H_id_false H_id_true H_id_0 H_id_s H_id_empty]. constructor. clear H_id_false H_id_true H_id_0 H_id_s H_id_empty;intros x9 x11 x13 H; injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x9 |- _ => destruct (H_id_edge y x11 x13 (refl_equal _)) as [x8 [x10 [x12]]]; intros ;intuition;exists x8;exists x10;exists x12;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . match goal with | H:algebra.EQT.one_step _ ?y x11 |- _ => destruct (H_id_edge x9 y x13 (refl_equal _)) as [x8 [x10 [x12]]]; intros ;intuition;exists x8;exists x10;exists x12;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . match goal with | H:algebra.EQT.one_step _ ?y x13 |- _ => destruct (H_id_edge x9 x11 y (refl_equal _)) as [x8 [x10 [x12]]]; intros ;intuition;exists x8;exists x10;exists x12;intuition; eapply closure_extension.refl_trans_clos_R;eassumption end . clear H_id_edge H_id_true H_id_0 H_id_s H_id_empty;intros H;injection H; clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_edge H_id_false H_id_0 H_id_s H_id_empty;intros H;injection H; clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_edge H_id_false H_id_true H_id_s H_id_empty;intros H; injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). clear H_id_edge H_id_false H_id_true H_id_0 H_id_empty;intros x9 H; injection H;clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). match goal with | H:algebra.EQT.one_step _ ?y x9 |- _ => destruct (H_id_s y (refl_equal _)) as [x8];intros ;intuition;exists x8; intuition;eapply closure_extension.refl_trans_clos_R;eassumption end . clear H_id_edge H_id_false H_id_true H_id_0 H_id_s;intros H;injection H; clear H;intros ;subst; repeat ( match goal with | H:closure.one_step_list (algebra.EQT.one_step _) _ _ |- _ => inversion H;clear H;subst end ). Qed. Lemma id_edge_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x9 x11 x13, t = (algebra.Alg.Term algebra.F.id_edge (x9::x11::x13::nil)) -> exists x8, exists x10, exists x12, t' = (algebra.Alg.Term algebra.F.id_edge (x8::x10::x12::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x8 x9)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x10 x11)/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x12 x13). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_false_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_false nil) -> t' = (algebra.Alg.Term algebra.F.id_false nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_true_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_true nil) -> t' = (algebra.Alg.Term algebra.F.id_true nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_0_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_0 nil) -> t' = (algebra.Alg.Term algebra.F.id_0 nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_s_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> forall x9, t = (algebra.Alg.Term algebra.F.id_s (x9::nil)) -> exists x8, t' = (algebra.Alg.Term algebra.F.id_s (x8::nil))/\ (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) x8 x9). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Lemma id_empty_is_R_xml_0_constructor : forall t t', (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) t' t) -> t = (algebra.Alg.Term algebra.F.id_empty nil) -> t' = (algebra.Alg.Term algebra.F.id_empty nil). Proof. intros t t' H. destruct (are_constuctors_of_R_xml_0 H). assumption. Qed. Ltac impossible_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_edge (?x10::?x9::?x8::nil)) |- _ => let x10 := fresh "x" in (let x9 := fresh "x" in (let x8 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (let Hred3 := fresh "Hred" in (destruct (id_edge_is_R_xml_0_constructor H (refl_equal _)) as [x10 [x9 [x8 [Heq [Hred3 [Hred2 Hred1]]]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_false nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_false_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_true nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_true_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_0 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_0_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_s (?x8::nil)) |- _ => let x8 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_s_is_R_xml_0_constructor H (refl_equal _)) as [x8 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; impossible_star_reduction_R_xml_0 )))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_empty nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_empty_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; impossible_star_reduction_R_xml_0 )) end . Ltac simplify_star_reduction_R_xml_0 := match goal with | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_edge (?x10::?x9::?x8::nil)) |- _ => let x10 := fresh "x" in (let x9 := fresh "x" in (let x8 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (let Hred2 := fresh "Hred" in (let Hred3 := fresh "Hred" in (destruct (id_edge_is_R_xml_0_constructor H (refl_equal _)) as [x10 [x9 [x8 [Heq [Hred3 [Hred2 Hred1]]]]]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_false nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_false_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_true nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_true_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_0 nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_0_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_s (?x8::nil)) |- _ => let x8 := fresh "x" in (let Heq := fresh "Heq" in (let Hred1 := fresh "Hred" in (destruct (id_s_is_R_xml_0_constructor H (refl_equal _)) as [x8 [Heq Hred1]]; (discriminate Heq)|| (injection Heq;intros ;subst;clear Heq;clear H; try (simplify_star_reduction_R_xml_0 ))))) | H:closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_rules) _ (algebra.Alg.Term algebra.F.id_empty nil) |- _ => let Heq := fresh "Heq" in (set (Heq:=id_empty_is_R_xml_0_constructor H (refl_equal _)) in *; (discriminate Heq)|| (clearbody Heq;try (subst);try (clear Heq);clear H; try (simplify_star_reduction_R_xml_0 ))) end . End R_xml_0_deep_rew. Module InterpGen := interp.Interp(algebra.EQT). Module ddp := dp.MakeDP(algebra.EQT). Module SymbType. Definition A := algebra.Alg.F.Symb.A. End SymbType. Module Symb_more_list := more_list_extention.Make(SymbType)(algebra.Alg.F.Symb). Module SymbSet := list_set.Make(algebra.F.Symb). Module Interp. Section S. Require Import interp. Hypothesis A : Type. Hypothesis Ale Alt Aeq : A -> A -> Prop. Hypothesis Aop : interp.ordering_pair Aeq Alt Ale. Hypothesis A0 : A. Notation Local "a <= b" := (Ale a b). Hypothesis P_id_eq : A ->A ->A. Hypothesis P_id_edge : A ->A ->A ->A. Hypothesis P_id_false : A. Hypothesis P_id_true : A. Hypothesis P_id_if_reach_1 : A ->A ->A ->A ->A ->A. Hypothesis P_id_union : A ->A ->A. Hypothesis P_id_0 : A. Hypothesis P_id_reach : A ->A ->A ->A ->A. Hypothesis P_id_or : A ->A ->A. Hypothesis P_id_s : A ->A. Hypothesis P_id_if_reach_2 : A ->A ->A ->A ->A ->A. Hypothesis P_id_empty : A. Hypothesis P_id_eq_monotonic : forall x8 x10 x9 x11, (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) ->P_id_eq x9 x11 <= P_id_eq x8 x10. Hypothesis P_id_edge_monotonic : forall x8 x12 x10 x9 x13 x11, (A0 <= x13)/\ (x13 <= x12) -> (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) ->P_id_edge x9 x11 x13 <= P_id_edge x8 x10 x12. Hypothesis P_id_if_reach_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (A0 <= x17)/\ (x17 <= x16) -> (A0 <= x15)/\ (x15 <= x14) -> (A0 <= x13)/\ (x13 <= x12) -> (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_1 x9 x11 x13 x15 x17 <= P_id_if_reach_1 x8 x10 x12 x14 x16. Hypothesis P_id_union_monotonic : forall x8 x10 x9 x11, (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) ->P_id_union x9 x11 <= P_id_union x8 x10. Hypothesis P_id_reach_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (A0 <= x15)/\ (x15 <= x14) -> (A0 <= x13)/\ (x13 <= x12) -> (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) -> P_id_reach x9 x11 x13 x15 <= P_id_reach x8 x10 x12 x14. Hypothesis P_id_or_monotonic : forall x8 x10 x9 x11, (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) ->P_id_or x9 x11 <= P_id_or x8 x10. Hypothesis P_id_s_monotonic : forall x8 x9, (A0 <= x9)/\ (x9 <= x8) ->P_id_s x9 <= P_id_s x8. Hypothesis P_id_if_reach_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (A0 <= x17)/\ (x17 <= x16) -> (A0 <= x15)/\ (x15 <= x14) -> (A0 <= x13)/\ (x13 <= x12) -> (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_2 x9 x11 x13 x15 x17 <= P_id_if_reach_2 x8 x10 x12 x14 x16. Hypothesis P_id_eq_bounded : forall x8 x9, (A0 <= x8) ->(A0 <= x9) ->A0 <= P_id_eq x9 x8. Hypothesis P_id_edge_bounded : forall x8 x10 x9, (A0 <= x8) ->(A0 <= x9) ->(A0 <= x10) ->A0 <= P_id_edge x10 x9 x8. Hypothesis P_id_false_bounded : A0 <= P_id_false . Hypothesis P_id_true_bounded : A0 <= P_id_true . Hypothesis P_id_if_reach_1_bounded : forall x8 x12 x10 x9 x11, (A0 <= x8) -> (A0 <= x9) -> (A0 <= x10) -> (A0 <= x11) ->(A0 <= x12) ->A0 <= P_id_if_reach_1 x12 x11 x10 x9 x8. Hypothesis P_id_union_bounded : forall x8 x9, (A0 <= x8) ->(A0 <= x9) ->A0 <= P_id_union x9 x8. Hypothesis P_id_0_bounded : A0 <= P_id_0 . Hypothesis P_id_reach_bounded : forall x8 x10 x9 x11, (A0 <= x8) -> (A0 <= x9) ->(A0 <= x10) ->(A0 <= x11) ->A0 <= P_id_reach x11 x10 x9 x8. Hypothesis P_id_or_bounded : forall x8 x9, (A0 <= x8) ->(A0 <= x9) ->A0 <= P_id_or x9 x8. Hypothesis P_id_s_bounded : forall x8, (A0 <= x8) ->A0 <= P_id_s x8. Hypothesis P_id_if_reach_2_bounded : forall x8 x12 x10 x9 x11, (A0 <= x8) -> (A0 <= x9) -> (A0 <= x10) -> (A0 <= x11) ->(A0 <= x12) ->A0 <= P_id_if_reach_2 x12 x11 x10 x9 x8. Hypothesis P_id_empty_bounded : A0 <= P_id_empty . Fixpoint measure t { struct t } := match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9::x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => A0 end. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9::x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9:: x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => A0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Definition Pols f : InterpGen.Pol_type A (InterpGen.get_arity f) := match f with | algebra.F.id_eq => P_id_eq | algebra.F.id_edge => P_id_edge | algebra.F.id_false => P_id_false | algebra.F.id_true => P_id_true | algebra.F.id_if_reach_1 => P_id_if_reach_1 | algebra.F.id_union => P_id_union | algebra.F.id_0 => P_id_0 | algebra.F.id_reach => P_id_reach | algebra.F.id_or => P_id_or | algebra.F.id_s => P_id_s | algebra.F.id_if_reach_2 => P_id_if_reach_2 | algebra.F.id_empty => P_id_empty end. Lemma same_measure : forall t, measure t = InterpGen.measure A0 Pols t. Proof. fix 1 . intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_eq => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_edge => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::_ => _ end | algebra.F.id_false => match l with | nil => _ | _::_ => _ end | algebra.F.id_true => match l with | nil => _ | _::_ => _ end | algebra.F.id_if_reach_1 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::nil => _ | _::_::_::_::_::nil => _ | _::_::_::_::_::_::_ => _ end | algebra.F.id_union => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_0 => match l with | nil => _ | _::_ => _ end | algebra.F.id_reach => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::nil => _ | _::_::_::_::_::_ => _ end | algebra.F.id_or => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_s => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_if_reach_2 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::nil => _ | _::_::_::_::_::nil => _ | _::_::_::_::_::_::_ => _ end | algebra.F.id_empty => match l with | nil => _ | _::_ => _ end end;simpl in |-*;unfold eq_rect_r, eq_rect, sym_eq in |-*; try (reflexivity );f_equal ;auto. Qed. Lemma measure_bounded : forall t, A0 <= measure t. Proof. intros t. rewrite same_measure in |-*. apply (InterpGen.measure_bounded Aop). intros f. case f. vm_compute in |-*;intros ;apply P_id_eq_bounded;assumption. vm_compute in |-*;intros ;apply P_id_edge_bounded;assumption. vm_compute in |-*;intros ;apply P_id_false_bounded;assumption. vm_compute in |-*;intros ;apply P_id_true_bounded;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_union_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reach_bounded;assumption. vm_compute in |-*;intros ;apply P_id_or_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_empty_bounded;assumption. Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. intros . do 2 (rewrite same_measure in |-*). apply InterpGen.measure_star_monotonic with (1:=Aop) (Pols:=Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). intros f. case f. vm_compute in |-*;intros ;apply P_id_eq_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_edge_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_if_reach_1_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_union_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_reach_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_or_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_s_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_2_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). intros f. case f. vm_compute in |-*;intros ;apply P_id_eq_bounded;assumption. vm_compute in |-*;intros ;apply P_id_edge_bounded;assumption. vm_compute in |-*;intros ;apply P_id_false_bounded;assumption. vm_compute in |-*;intros ;apply P_id_true_bounded;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_union_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reach_bounded;assumption. vm_compute in |-*;intros ;apply P_id_or_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_empty_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. assumption. Qed. Hypothesis P_id_IF_REACH_2 : A ->A ->A ->A ->A ->A. Hypothesis P_id_EQ : A ->A ->A. Hypothesis P_id_REACH : A ->A ->A ->A ->A. Hypothesis P_id_OR : A ->A ->A. Hypothesis P_id_UNION : A ->A ->A. Hypothesis P_id_IF_REACH_1 : A ->A ->A ->A ->A ->A. Hypothesis P_id_IF_REACH_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (A0 <= x17)/\ (x17 <= x16) -> (A0 <= x15)/\ (x15 <= x14) -> (A0 <= x13)/\ (x13 <= x12) -> (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_2 x9 x11 x13 x15 x17 <= P_id_IF_REACH_2 x8 x10 x12 x14 x16. Hypothesis P_id_EQ_monotonic : forall x8 x10 x9 x11, (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) ->P_id_EQ x9 x11 <= P_id_EQ x8 x10. Hypothesis P_id_REACH_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (A0 <= x15)/\ (x15 <= x14) -> (A0 <= x13)/\ (x13 <= x12) -> (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) -> P_id_REACH x9 x11 x13 x15 <= P_id_REACH x8 x10 x12 x14. Hypothesis P_id_OR_monotonic : forall x8 x10 x9 x11, (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) ->P_id_OR x9 x11 <= P_id_OR x8 x10. Hypothesis P_id_UNION_monotonic : forall x8 x10 x9 x11, (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) ->P_id_UNION x9 x11 <= P_id_UNION x8 x10. Hypothesis P_id_IF_REACH_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (A0 <= x17)/\ (x17 <= x16) -> (A0 <= x15)/\ (x15 <= x14) -> (A0 <= x13)/\ (x13 <= x12) -> (A0 <= x11)/\ (x11 <= x10) -> (A0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_1 x9 x11 x13 x15 x17 <= P_id_IF_REACH_1 x8 x10 x12 x14 x16. Definition marked_measure t := match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Definition Marked_pols : forall f, (algebra.EQT.defined R_xml_0_deep_rew.R_xml_0_rules f) -> InterpGen.Pol_type A (InterpGen.get_arity f). Proof. intros f H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x12 x11 x10 x9 x8; apply (P_id_IF_REACH_2 x12 x11 x10 x9 x8). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x9 x8;apply (P_id_OR x9 x8). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x11 x10 x9 x8;apply (P_id_REACH x11 x10 x9 x8). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x9 x8;apply (P_id_UNION x9 x8). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x12 x11 x10 x9 x8; apply (P_id_IF_REACH_1 x12 x11 x10 x9 x8). match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros x9 x8;apply (P_id_EQ x9 x8). discriminate H. Defined. Lemma same_marked_measure : forall t, marked_measure t = InterpGen.marked_measure A0 Pols Marked_pols (ddp.defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included) t. Proof. intros [a| f l]. simpl in |-*. unfold eq_rect_r, eq_rect, sym_eq in |-*. reflexivity . refine match f with | algebra.F.id_eq => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_edge => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::_ => _ end | algebra.F.id_false => match l with | nil => _ | _::_ => _ end | algebra.F.id_true => match l with | nil => _ | _::_ => _ end | algebra.F.id_if_reach_1 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::nil => _ | _::_::_::_::_::nil => _ | _::_::_::_::_::_::_ => _ end | algebra.F.id_union => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_0 => match l with | nil => _ | _::_ => _ end | algebra.F.id_reach => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::nil => _ | _::_::_::_::_::_ => _ end | algebra.F.id_or => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::_ => _ end | algebra.F.id_s => match l with | nil => _ | _::nil => _ | _::_::_ => _ end | algebra.F.id_if_reach_2 => match l with | nil => _ | _::nil => _ | _::_::nil => _ | _::_::_::nil => _ | _::_::_::_::nil => _ | _::_::_::_::_::nil => _ | _::_::_::_::_::_::_ => _ end | algebra.F.id_empty => match l with | nil => _ | _::_ => _ end end. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . lazy - [measure InterpGen.measure Pols] in |-* ;f_equal ; apply same_measure. vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . vm_compute in |-*;reflexivity . Qed. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11::x10:: x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9:: x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. intros . do 2 (rewrite same_marked_measure in |-*). apply InterpGen.marked_measure_star_monotonic with (1:=Aop) (Pols:= Pols) (rules:=R_xml_0_deep_rew.R_xml_0_rules). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_eq_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_edge_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_if_reach_1_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_union_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). vm_compute in |-*;intros ;apply P_id_reach_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_or_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_s_monotonic;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_2_monotonic;assumption. vm_compute in |-*;apply (Aop.(le_refl)). clear f. intros f. case f. vm_compute in |-*;intros ;apply P_id_eq_bounded;assumption. vm_compute in |-*;intros ;apply P_id_edge_bounded;assumption. vm_compute in |-*;intros ;apply P_id_false_bounded;assumption. vm_compute in |-*;intros ;apply P_id_true_bounded;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_1_bounded;assumption. vm_compute in |-*;intros ;apply P_id_union_bounded;assumption. vm_compute in |-*;intros ;apply P_id_0_bounded;assumption. vm_compute in |-*;intros ;apply P_id_reach_bounded;assumption. vm_compute in |-*;intros ;apply P_id_or_bounded;assumption. vm_compute in |-*;intros ;apply P_id_s_bounded;assumption. vm_compute in |-*;intros ;apply P_id_if_reach_2_bounded;assumption. vm_compute in |-*;intros ;apply P_id_empty_bounded;assumption. intros . do 2 (rewrite <- same_measure in |-*). apply rules_monotonic;assumption. clear f. intros f. clear H. intros H. generalize H. apply ddp.defined_list_complete with (1:=R_xml_0_deep_rew.R_xml_0_rules_included) in H . apply (Symb_more_list.change_in algebra.F.symb_order) in H . set (u := (Symb_more_list.qs algebra.F.symb_order (Symb_more_list.XSet.remove_red (ddp.defined_list R_xml_0_deep_rew.R_xml_0_rule_as_list)))) in * . vm_compute in u . unfold u in * . clear u . unfold more_list.mem_bool in H . match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_IF_REACH_2_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_OR_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_REACH_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_UNION_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_IF_REACH_1_monotonic;assumption. match type of H with | orb ?a ?b = true => assert (H':{a = true}+{b = true});[ revert H;case a;[left;reflexivity|simpl;intros h;right;exact h]| clear H;destruct H' as [H|H]] end . match type of H with | _ _ ?t = true => generalize (algebra.F.symb_eq_bool_ok f t); unfold algebra.Alg.eq_symb_bool in H; rewrite H;clear H;intros ;subst end . vm_compute in |-*;intros ;apply P_id_EQ_monotonic;assumption. discriminate H. assumption. Qed. End S. End Interp. Module InterpZ. Section S. Open Scope Z_scope. Hypothesis min_value : Z. Import ring_extention. Notation Local "'Alt'" := (Zwf.Zwf min_value). Notation Local "'Ale'" := Zle. Notation Local "'Aeq'" := (@eq Z). Notation Local "a <= b" := (Ale a b). Notation Local "a < b" := (Alt a b). Hypothesis P_id_eq : Z ->Z ->Z. Hypothesis P_id_edge : Z ->Z ->Z ->Z. Hypothesis P_id_false : Z. Hypothesis P_id_true : Z. Hypothesis P_id_if_reach_1 : Z ->Z ->Z ->Z ->Z ->Z. Hypothesis P_id_union : Z ->Z ->Z. Hypothesis P_id_0 : Z. Hypothesis P_id_reach : Z ->Z ->Z ->Z ->Z. Hypothesis P_id_or : Z ->Z ->Z. Hypothesis P_id_s : Z ->Z. Hypothesis P_id_if_reach_2 : Z ->Z ->Z ->Z ->Z ->Z. Hypothesis P_id_empty : Z. Hypothesis P_id_eq_monotonic : forall x8 x10 x9 x11, (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) ->P_id_eq x9 x11 <= P_id_eq x8 x10. Hypothesis P_id_edge_monotonic : forall x8 x12 x10 x9 x13 x11, (min_value <= x13)/\ (x13 <= x12) -> (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) -> P_id_edge x9 x11 x13 <= P_id_edge x8 x10 x12. Hypothesis P_id_if_reach_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (min_value <= x17)/\ (x17 <= x16) -> (min_value <= x15)/\ (x15 <= x14) -> (min_value <= x13)/\ (x13 <= x12) -> (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) -> P_id_if_reach_1 x9 x11 x13 x15 x17 <= P_id_if_reach_1 x8 x10 x12 x14 x16. Hypothesis P_id_union_monotonic : forall x8 x10 x9 x11, (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) ->P_id_union x9 x11 <= P_id_union x8 x10. Hypothesis P_id_reach_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (min_value <= x15)/\ (x15 <= x14) -> (min_value <= x13)/\ (x13 <= x12) -> (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) -> P_id_reach x9 x11 x13 x15 <= P_id_reach x8 x10 x12 x14. Hypothesis P_id_or_monotonic : forall x8 x10 x9 x11, (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) ->P_id_or x9 x11 <= P_id_or x8 x10. Hypothesis P_id_s_monotonic : forall x8 x9, (min_value <= x9)/\ (x9 <= x8) ->P_id_s x9 <= P_id_s x8. Hypothesis P_id_if_reach_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (min_value <= x17)/\ (x17 <= x16) -> (min_value <= x15)/\ (x15 <= x14) -> (min_value <= x13)/\ (x13 <= x12) -> (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) -> P_id_if_reach_2 x9 x11 x13 x15 x17 <= P_id_if_reach_2 x8 x10 x12 x14 x16. Hypothesis P_id_eq_bounded : forall x8 x9, (min_value <= x8) ->(min_value <= x9) ->min_value <= P_id_eq x9 x8. Hypothesis P_id_edge_bounded : forall x8 x10 x9, (min_value <= x8) -> (min_value <= x9) -> (min_value <= x10) ->min_value <= P_id_edge x10 x9 x8. Hypothesis P_id_false_bounded : min_value <= P_id_false . Hypothesis P_id_true_bounded : min_value <= P_id_true . Hypothesis P_id_if_reach_1_bounded : forall x8 x12 x10 x9 x11, (min_value <= x8) -> (min_value <= x9) -> (min_value <= x10) -> (min_value <= x11) -> (min_value <= x12) ->min_value <= P_id_if_reach_1 x12 x11 x10 x9 x8. Hypothesis P_id_union_bounded : forall x8 x9, (min_value <= x8) ->(min_value <= x9) ->min_value <= P_id_union x9 x8. Hypothesis P_id_0_bounded : min_value <= P_id_0 . Hypothesis P_id_reach_bounded : forall x8 x10 x9 x11, (min_value <= x8) -> (min_value <= x9) -> (min_value <= x10) -> (min_value <= x11) ->min_value <= P_id_reach x11 x10 x9 x8. Hypothesis P_id_or_bounded : forall x8 x9, (min_value <= x8) ->(min_value <= x9) ->min_value <= P_id_or x9 x8. Hypothesis P_id_s_bounded : forall x8, (min_value <= x8) ->min_value <= P_id_s x8. Hypothesis P_id_if_reach_2_bounded : forall x8 x12 x10 x9 x11, (min_value <= x8) -> (min_value <= x9) -> (min_value <= x10) -> (min_value <= x11) -> (min_value <= x12) ->min_value <= P_id_if_reach_2 x12 x11 x10 x9 x8. Hypothesis P_id_empty_bounded : min_value <= P_id_empty . Definition measure := Interp.measure min_value P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9::x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9:: x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => min_value end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, min_value <= measure t. Proof. unfold measure in |-*. apply Interp.measure_bounded with Alt Aeq; (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Hypothesis rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply Interp.measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. Qed. Hypothesis P_id_IF_REACH_2 : Z ->Z ->Z ->Z ->Z ->Z. Hypothesis P_id_EQ : Z ->Z ->Z. Hypothesis P_id_REACH : Z ->Z ->Z ->Z ->Z. Hypothesis P_id_OR : Z ->Z ->Z. Hypothesis P_id_UNION : Z ->Z ->Z. Hypothesis P_id_IF_REACH_1 : Z ->Z ->Z ->Z ->Z ->Z. Hypothesis P_id_IF_REACH_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (min_value <= x17)/\ (x17 <= x16) -> (min_value <= x15)/\ (x15 <= x14) -> (min_value <= x13)/\ (x13 <= x12) -> (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_2 x9 x11 x13 x15 x17 <= P_id_IF_REACH_2 x8 x10 x12 x14 x16. Hypothesis P_id_EQ_monotonic : forall x8 x10 x9 x11, (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) ->P_id_EQ x9 x11 <= P_id_EQ x8 x10. Hypothesis P_id_REACH_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (min_value <= x15)/\ (x15 <= x14) -> (min_value <= x13)/\ (x13 <= x12) -> (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) -> P_id_REACH x9 x11 x13 x15 <= P_id_REACH x8 x10 x12 x14. Hypothesis P_id_OR_monotonic : forall x8 x10 x9 x11, (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) ->P_id_OR x9 x11 <= P_id_OR x8 x10. Hypothesis P_id_UNION_monotonic : forall x8 x10 x9 x11, (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) ->P_id_UNION x9 x11 <= P_id_UNION x8 x10. Hypothesis P_id_IF_REACH_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (min_value <= x17)/\ (x17 <= x16) -> (min_value <= x15)/\ (x15 <= x14) -> (min_value <= x13)/\ (x13 <= x12) -> (min_value <= x11)/\ (x11 <= x10) -> (min_value <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_1 x9 x11 x13 x15 x17 <= P_id_IF_REACH_1 x8 x10 x12 x14 x16. Definition marked_measure := Interp.marked_measure min_value P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty P_id_IF_REACH_2 P_id_EQ P_id_REACH P_id_OR P_id_UNION P_id_IF_REACH_1. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11::x10:: x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9:: x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply Interp.marked_measure_star_monotonic with Alt Aeq. (apply interp.o_Z)|| (cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;auto with zarith). intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. intros ;apply P_id_IF_REACH_2_monotonic;assumption. intros ;apply P_id_EQ_monotonic;assumption. intros ;apply P_id_REACH_monotonic;assumption. intros ;apply P_id_OR_monotonic;assumption. intros ;apply P_id_UNION_monotonic;assumption. intros ;apply P_id_IF_REACH_1_monotonic;assumption. Qed. End S. End InterpZ. Module WF_R_xml_0_deep_rew. Inductive DP_R_xml_0 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_0 : forall x8 x2 x1 x9, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x2::nil)) x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_eq (x1::x2::nil)) (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) (* *) | DP_R_xml_0_1 : forall x8 x4 x2 x1 x9 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x1::x2::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_union (x4::x3::nil)) (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) (* *) | DP_R_xml_0_2 : forall x8 x4 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_eq (x1::x5::nil))::x1:: x2::(algebra.Alg.Term algebra.F.id_edge (x5::x6:: x4::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) (* *) | DP_R_xml_0_3 : forall x8 x4 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_eq (x1::x5::nil)) (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) (* *) | DP_R_xml_0_4 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_true nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_eq (x2::x6::nil))::x1:: x2::(algebra.Alg.Term algebra.F.id_edge (x5::x6:: x4::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_5 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_true nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_eq (x2::x6::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_6 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_reach (x1::x2::x4::x3::nil)):: (algebra.Alg.Term algebra.F.id_reach (x6::x2:: (algebra.Alg.Term algebra.F.id_union (x4::x3::nil)):: (algebra.Alg.Term algebra.F.id_empty nil)::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_7 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_reach (x1::x2::x4:: x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_8 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_reach (x6::x2:: (algebra.Alg.Term algebra.F.id_union (x4::x3::nil)):: (algebra.Alg.Term algebra.F.id_empty nil)::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_9 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_union (x4::x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_10 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0 (algebra.Alg.Term algebra.F.id_reach (x1::x2::x4:: (algebra.Alg.Term algebra.F.id_edge (x5::x6:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) . Module ddp := dp.MakeDP(algebra.EQT). Lemma R_xml_0_dp_step_spec : forall x y, (ddp.dp_step R_xml_0_deep_rew.R_xml_0_rules x y) -> exists f, exists l1, exists l2, y = algebra.Alg.Term f l2/\ (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2)/\ (ddp.dp R_xml_0_deep_rew.R_xml_0_rules x (algebra.Alg.Term f l1)). Proof. intros x y H. induction H. inversion H. subst. destruct t0. refine ((False_ind) _ _). refine (R_xml_0_deep_rew.R_xml_0_non_var H0). simpl in H|-*. exists a. exists ((List.map) (algebra.Alg.apply_subst sigma) l). exists ((List.map) (algebra.Alg.apply_subst sigma) l). repeat (constructor). assumption. exists f. exists l2. exists l1. constructor. constructor. constructor. constructor. rewrite <- closure.rwr_list_trans_clos_one_step_list. assumption. assumption. Qed. Ltac included_dp_tac H := injection H;clear H;intros;subst; repeat (match goal with | H: closure.refl_trans_clos (closure.one_step_list _) (_::_) _ |- _=> let x := fresh "x" in let l := fresh "l" in let h1 := fresh "h" in let h2 := fresh "h" in let h3 := fresh "h" in destruct (@algebra.EQT_ext.one_step_list_star_decompose_cons _ _ _ _ H) as [x [l[h1[h2 h3]]]];clear H;subst | H: closure.refl_trans_clos (closure.one_step_list _) nil _ |- _ => rewrite (@algebra.EQT_ext.one_step_list_star_decompose_nil _ _ H) in *;clear H end );simpl; econstructor eassumption . Ltac dp_concl_tac h2 h cont_tac t := match t with | False => let h' := fresh "a" in (set (h':=t) in *;cont_tac h'; repeat ( let e := type of h in (match e with | ?t => unfold t in h|-; (case h; [abstract (clear h;intros h;injection h; clear h;intros ;subst; included_dp_tac h2)| clear h;intros h;clear t]) | ?t => unfold t in h|-;elim h end ) )) | or ?a ?b => let cont_tac h' := let h'' := fresh "a" in (set (h'':=or a h') in *;cont_tac h'') in (dp_concl_tac h2 h cont_tac b) end . Module WF_DP_R_xml_0. Inductive DP_R_xml_0_non_scc_1 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_1_0 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_non_scc_1 (algebra.Alg.Term algebra.F.id_or ((algebra.Alg.Term algebra.F.id_reach (x1:: x2::x4::x3::nil))::(algebra.Alg.Term algebra.F.id_reach (x6::x2:: (algebra.Alg.Term algebra.F.id_union (x4:: x3::nil))::(algebra.Alg.Term algebra.F.id_empty nil)::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) . Lemma acc_DP_R_xml_0_non_scc_1 : forall x y, (DP_R_xml_0_non_scc_1 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_scc_2 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_2_0 : forall x8 x4 x2 x1 x9 x3, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x1::x2::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_2 (algebra.Alg.Term algebra.F.id_union (x4::x3::nil)) (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) . Module WF_DP_R_xml_0_scc_2. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_eq (x8:Z) (x9:Z) := 3* x9. Definition P_id_edge (x8:Z) (x9:Z) (x10:Z) := 2 + 2* x8 + 3* x9 + 1* x10. Definition P_id_false := 0. Definition P_id_true := 0. Definition P_id_if_reach_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_union (x8:Z) (x9:Z) := 3* x8 + 1* x9. Definition P_id_0 := 0. Definition P_id_reach (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 0. Definition P_id_or (x8:Z) (x9:Z) := 2* x9. Definition P_id_s (x8:Z) := 1 + 2* x8. Definition P_id_if_reach_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_empty := 0. Lemma P_id_eq_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_eq x9 x11 <= P_id_eq x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_monotonic : forall x8 x12 x10 x9 x13 x11, (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_edge x9 x11 x13 <= P_id_edge x8 x10 x12. Proof. intros x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_1 x9 x11 x13 x15 x17 <= P_id_if_reach_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_union x9 x11 <= P_id_union x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_reach x9 x11 x13 x15 <= P_id_reach x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_or x9 x11 <= P_id_or x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x9, (0 <= x9)/\ (x9 <= x8) ->P_id_s x9 <= P_id_s x8. Proof. intros x9 x8. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_2 x9 x11 x13 x15 x17 <= P_id_if_reach_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_eq_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_eq x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_bounded : forall x8 x10 x9, (0 <= x8) ->(0 <= x9) ->(0 <= x10) ->0 <= P_id_edge x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_false_bounded : 0 <= P_id_false . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_true_bounded : 0 <= P_id_true . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_1 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_union x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_0_bounded : 0 <= P_id_0 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_bounded : forall x8 x10 x9 x11, (0 <= x8) -> (0 <= x9) ->(0 <= x10) ->(0 <= x11) ->0 <= P_id_reach x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_or x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x8, (0 <= x8) ->0 <= P_id_s x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_2 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_empty_bounded : 0 <= P_id_empty . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9::x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9:: x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_IF_REACH_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_EQ (x8:Z) (x9:Z) := 0. Definition P_id_REACH (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 0. Definition P_id_OR (x8:Z) (x9:Z) := 0. Definition P_id_UNION (x8:Z) (x9:Z) := 2* x8. Definition P_id_IF_REACH_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Lemma P_id_IF_REACH_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_2 x9 x11 x13 x15 x17 <= P_id_IF_REACH_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_EQ_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_EQ x9 x11 <= P_id_EQ x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_REACH_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_REACH x9 x11 x13 x15 <= P_id_REACH x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_OR_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_OR x9 x11 <= P_id_OR x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_UNION_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_UNION x9 x11 <= P_id_UNION x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_IF_REACH_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_1 x9 x11 x13 x15 x17 <= P_id_IF_REACH_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty P_id_IF_REACH_2 P_id_EQ P_id_REACH P_id_OR P_id_UNION P_id_IF_REACH_1. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11::x10:: x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9:: x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. intros ;apply P_id_IF_REACH_2_monotonic;assumption. intros ;apply P_id_EQ_monotonic;assumption. intros ;apply P_id_REACH_monotonic;assumption. intros ;apply P_id_OR_monotonic;assumption. intros ;apply P_id_UNION_monotonic;assumption. intros ;apply P_id_IF_REACH_1_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_2. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_2. Definition wf_DP_R_xml_0_scc_2 := WF_DP_R_xml_0_scc_2.wf. Lemma acc_DP_R_xml_0_scc_2 : forall x y, (DP_R_xml_0_scc_2 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_2). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). apply wf_DP_R_xml_0_scc_2. Qed. Inductive DP_R_xml_0_non_scc_3 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_3_0 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_non_scc_3 (algebra.Alg.Term algebra.F.id_union (x4:: x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) . Lemma acc_DP_R_xml_0_non_scc_3 : forall x y, (DP_R_xml_0_non_scc_3 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_4 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_4_0 : forall x8 x2 x1 x9, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x1::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_s (x2::nil)) x8) -> DP_R_xml_0_scc_4 (algebra.Alg.Term algebra.F.id_eq (x1::x2::nil)) (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) . Module WF_DP_R_xml_0_scc_4. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_eq (x8:Z) (x9:Z) := 0. Definition P_id_edge (x8:Z) (x9:Z) (x10:Z) := 1* x8. Definition P_id_false := 0. Definition P_id_true := 0. Definition P_id_if_reach_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_union (x8:Z) (x9:Z) := 2* x8 + 2* x9. Definition P_id_0 := 0. Definition P_id_reach (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 0. Definition P_id_or (x8:Z) (x9:Z) := 2* x9. Definition P_id_s (x8:Z) := 1 + 2* x8. Definition P_id_if_reach_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_empty := 0. Lemma P_id_eq_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_eq x9 x11 <= P_id_eq x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_monotonic : forall x8 x12 x10 x9 x13 x11, (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_edge x9 x11 x13 <= P_id_edge x8 x10 x12. Proof. intros x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_1 x9 x11 x13 x15 x17 <= P_id_if_reach_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_union x9 x11 <= P_id_union x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_reach x9 x11 x13 x15 <= P_id_reach x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_or x9 x11 <= P_id_or x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x9, (0 <= x9)/\ (x9 <= x8) ->P_id_s x9 <= P_id_s x8. Proof. intros x9 x8. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_2 x9 x11 x13 x15 x17 <= P_id_if_reach_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_eq_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_eq x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_bounded : forall x8 x10 x9, (0 <= x8) ->(0 <= x9) ->(0 <= x10) ->0 <= P_id_edge x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_false_bounded : 0 <= P_id_false . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_true_bounded : 0 <= P_id_true . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_1 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_union x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_0_bounded : 0 <= P_id_0 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_bounded : forall x8 x10 x9 x11, (0 <= x8) -> (0 <= x9) ->(0 <= x10) ->(0 <= x11) ->0 <= P_id_reach x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_or x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x8, (0 <= x8) ->0 <= P_id_s x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_2 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_empty_bounded : 0 <= P_id_empty . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9::x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9:: x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_IF_REACH_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_EQ (x8:Z) (x9:Z) := 1* x8. Definition P_id_REACH (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 0. Definition P_id_OR (x8:Z) (x9:Z) := 0. Definition P_id_UNION (x8:Z) (x9:Z) := 0. Definition P_id_IF_REACH_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Lemma P_id_IF_REACH_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_2 x9 x11 x13 x15 x17 <= P_id_IF_REACH_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_EQ_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_EQ x9 x11 <= P_id_EQ x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_REACH_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_REACH x9 x11 x13 x15 <= P_id_REACH x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_OR_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_OR x9 x11 <= P_id_OR x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_UNION_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_UNION x9 x11 <= P_id_UNION x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_IF_REACH_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_1 x9 x11 x13 x15 x17 <= P_id_IF_REACH_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty P_id_IF_REACH_2 P_id_EQ P_id_REACH P_id_OR P_id_UNION P_id_IF_REACH_1. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11::x10:: x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9:: x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. intros ;apply P_id_IF_REACH_2_monotonic;assumption. intros ;apply P_id_EQ_monotonic;assumption. intros ;apply P_id_REACH_monotonic;assumption. intros ;apply P_id_OR_monotonic;assumption. intros ;apply P_id_UNION_monotonic;assumption. intros ;apply P_id_IF_REACH_1_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_4. Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_4. Definition wf_DP_R_xml_0_scc_4 := WF_DP_R_xml_0_scc_4.wf. Lemma acc_DP_R_xml_0_scc_4 : forall x y, (DP_R_xml_0_scc_4 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_4). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). apply wf_DP_R_xml_0_scc_4. Qed. Inductive DP_R_xml_0_non_scc_5 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_5_0 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_true nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_non_scc_5 (algebra.Alg.Term algebra.F.id_eq (x2:: x6::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) . Lemma acc_DP_R_xml_0_non_scc_5 : forall x y, (DP_R_xml_0_non_scc_5 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_non_scc_6 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_non_scc_6_0 : forall x8 x4 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_non_scc_6 (algebra.Alg.Term algebra.F.id_eq (x1:: x5::nil)) (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) . Lemma acc_DP_R_xml_0_non_scc_6 : forall x y, (DP_R_xml_0_non_scc_6 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec;econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))). Qed. Inductive DP_R_xml_0_scc_7 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_0 : forall x8 x4 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7 (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_eq (x1:: x5::nil))::x1::x2::(algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) (* *) | DP_R_xml_0_scc_7_1 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_true nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7 (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_eq (x2:: x6::nil))::x1::x2::(algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_scc_7_2 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7 (algebra.Alg.Term algebra.F.id_reach (x1::x2:: x4::x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_scc_7_3 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7 (algebra.Alg.Term algebra.F.id_reach (x6::x2:: (algebra.Alg.Term algebra.F.id_union (x4:: x3::nil))::(algebra.Alg.Term algebra.F.id_empty nil)::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_scc_7_4 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7 (algebra.Alg.Term algebra.F.id_reach (x1::x2:: x4::(algebra.Alg.Term algebra.F.id_edge (x5:: x6::x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) . Module WF_DP_R_xml_0_scc_7. Inductive DP_R_xml_0_scc_7_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_large_0 : forall x8 x4 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_eq (x1:: x5::nil))::x1::x2::(algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)):: x3::nil)) (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) (* *) | DP_R_xml_0_scc_7_large_1 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_true nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_eq (x2:: x6::nil))::x1::x2::(algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)):: x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_scc_7_large_2 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large (algebra.Alg.Term algebra.F.id_reach (x6:: x2::(algebra.Alg.Term algebra.F.id_union (x4::x3::nil))::(algebra.Alg.Term algebra.F.id_empty nil)::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_scc_7_large_3 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large (algebra.Alg.Term algebra.F.id_reach (x1:: x2::x4::(algebra.Alg.Term algebra.F.id_edge (x5::x6:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) . Inductive DP_R_xml_0_scc_7_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_strict_0 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_strict (algebra.Alg.Term algebra.F.id_reach (x1::x2::x4::x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) . Module WF_DP_R_xml_0_scc_7_large. Inductive DP_R_xml_0_scc_7_large_large : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_large_large_0 : forall x8 x4 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large_large (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_eq (x1::x5::nil))::x1::x2:: (algebra.Alg.Term algebra.F.id_edge (x5::x6:: x4::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) (* *) | DP_R_xml_0_scc_7_large_large_1 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_true nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large_large (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_eq (x2::x6::nil)):: x1::x2::(algebra.Alg.Term algebra.F.id_edge (x5::x6:: x4::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_scc_7_large_large_2 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large_large (algebra.Alg.Term algebra.F.id_reach (x1::x2::x4:: (algebra.Alg.Term algebra.F.id_edge (x5::x6:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) . Inductive DP_R_xml_0_scc_7_large_strict : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_large_strict_0 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large_strict (algebra.Alg.Term algebra.F.id_reach (x6::x2:: (algebra.Alg.Term algebra.F.id_union (x4:: x3::nil))::(algebra.Alg.Term algebra.F.id_empty nil)::nil)) (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9:: x8::nil)) . Module WF_DP_R_xml_0_scc_7_large_large. Inductive DP_R_xml_0_scc_7_large_large_non_scc_1 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_large_large_non_scc_1_0 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_true nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large_large_non_scc_1 (algebra.Alg.Term algebra.F.id_if_reach_2 ((algebra.Alg.Term algebra.F.id_eq (x2:: x6::nil))::x1::x2:: (algebra.Alg.Term algebra.F.id_edge (x5:: x6::x4::nil)):: x3::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) . Lemma acc_DP_R_xml_0_scc_7_large_large_non_scc_1 : forall x y, (DP_R_xml_0_scc_7_large_large_non_scc_1 x y) -> Acc WF_DP_R_xml_0_scc_7_large.DP_R_xml_0_scc_7_large_large x. Proof. intros x y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )). Qed. Inductive DP_R_xml_0_scc_7_large_large_scc_2 : algebra.Alg.term ->algebra.Alg.term ->Prop := (* *) | DP_R_xml_0_scc_7_large_large_scc_2_0 : forall x8 x4 x12 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_false nil) x12) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large_large_scc_2 (algebra.Alg.Term algebra.F.id_reach (x1:: x2::x4::(algebra.Alg.Term algebra.F.id_edge (x5::x6:: x3::nil))::nil)) (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9:: x8::nil)) (* *) | DP_R_xml_0_scc_7_large_large_scc_2_1 : forall x8 x4 x2 x10 x6 x1 x9 x5 x3 x11, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x1 x11) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x2 x10) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) (algebra.Alg.Term algebra.F.id_edge (x5::x6::x4::nil)) x9) -> (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) x3 x8) -> DP_R_xml_0_scc_7_large_large_scc_2 (algebra.Alg.Term algebra.F.id_if_reach_1 ((algebra.Alg.Term algebra.F.id_eq (x1:: x5::nil))::x1::x2:: (algebra.Alg.Term algebra.F.id_edge (x5::x6:: x4::nil))::x3::nil)) (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9::x8::nil)) . Module WF_DP_R_xml_0_scc_7_large_large_scc_2. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_eq (x8:Z) (x9:Z) := 1. Definition P_id_edge (x8:Z) (x9:Z) (x10:Z) := 1 + 1* x10. Definition P_id_false := 0. Definition P_id_true := 0. Definition P_id_if_reach_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_union (x8:Z) (x9:Z) := 1* x8 + 2* x9. Definition P_id_0 := 0. Definition P_id_reach (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 0. Definition P_id_or (x8:Z) (x9:Z) := 2* x9. Definition P_id_s (x8:Z) := 0. Definition P_id_if_reach_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_empty := 0. Lemma P_id_eq_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_eq x9 x11 <= P_id_eq x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_monotonic : forall x8 x12 x10 x9 x13 x11, (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_edge x9 x11 x13 <= P_id_edge x8 x10 x12. Proof. intros x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_1 x9 x11 x13 x15 x17 <= P_id_if_reach_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_union x9 x11 <= P_id_union x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_reach x9 x11 x13 x15 <= P_id_reach x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_or x9 x11 <= P_id_or x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x9, (0 <= x9)/\ (x9 <= x8) ->P_id_s x9 <= P_id_s x8. Proof. intros x9 x8. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_2 x9 x11 x13 x15 x17 <= P_id_if_reach_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_eq_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_eq x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_bounded : forall x8 x10 x9, (0 <= x8) ->(0 <= x9) ->(0 <= x10) ->0 <= P_id_edge x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_false_bounded : 0 <= P_id_false . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_true_bounded : 0 <= P_id_true . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_1 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_union x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_0_bounded : 0 <= P_id_0 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_bounded : forall x8 x10 x9 x11, (0 <= x8) -> (0 <= x9) ->(0 <= x10) ->(0 <= x11) ->0 <= P_id_reach x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_or x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x8, (0 <= x8) ->0 <= P_id_s x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_2 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_empty_bounded : 0 <= P_id_empty . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9:: x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9:: x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_IF_REACH_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_EQ (x8:Z) (x9:Z) := 0. Definition P_id_REACH (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 1 + 2* x10. Definition P_id_OR (x8:Z) (x9:Z) := 0. Definition P_id_UNION (x8:Z) (x9:Z) := 0. Definition P_id_IF_REACH_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 2* x11. Lemma P_id_IF_REACH_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_2 x9 x11 x13 x15 x17 <= P_id_IF_REACH_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_EQ_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_EQ x9 x11 <= P_id_EQ x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_REACH_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_REACH x9 x11 x13 x15 <= P_id_REACH x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_OR_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_OR x9 x11 <= P_id_OR x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_UNION_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_UNION x9 x11 <= P_id_UNION x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_IF_REACH_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_1 x9 x11 x13 x15 x17 <= P_id_IF_REACH_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty P_id_IF_REACH_2 P_id_EQ P_id_REACH P_id_OR P_id_UNION P_id_IF_REACH_1. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11::x10::x9::x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9:: x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11:: x10::x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9:: x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9:: x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11::x10::x9::x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. intros ;apply P_id_IF_REACH_2_monotonic;assumption. intros ;apply P_id_EQ_monotonic;assumption. intros ;apply P_id_REACH_monotonic;assumption. intros ;apply P_id_OR_monotonic;assumption. intros ;apply P_id_UNION_monotonic;assumption. intros ;apply P_id_IF_REACH_1_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Lemma wf : well_founded WF_DP_R_xml_0_scc_7_large_large.DP_R_xml_0_scc_7_large_large_scc_2 . Proof. intros x. apply well_founded_ind with (R:=fun x y => (Zwf.Zwf 0) (marked_measure x) (marked_measure y)). apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. clear x. intros x IHx. repeat ( constructor;inversion 1;subst; full_prove_ineq algebra.Alg.Term ltac:(algebra.Alg_ext.find_replacement ) algebra.EQT_ext.one_step_list_refl_trans_clos marked_measure marked_measure_star_monotonic (Zwf.Zwf 0) (interp.o_Z 0) ltac:(fun _ => R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 ) ltac:(fun _ => rewrite_and_unfold ) ltac:(fun _ => generate_pos_hyp ) ltac:(fun _ => cbv beta iota zeta delta - [Zplus Zmult Zle Zlt] in * ; try (constructor)) IHx ). Qed. End WF_DP_R_xml_0_scc_7_large_large_scc_2. Definition wf_DP_R_xml_0_scc_7_large_large_scc_2 := WF_DP_R_xml_0_scc_7_large_large_scc_2.wf. Lemma acc_DP_R_xml_0_scc_7_large_large_scc_2 : forall x y, (DP_R_xml_0_scc_7_large_large_scc_2 x y) -> Acc WF_DP_R_xml_0_scc_7_large.DP_R_xml_0_scc_7_large_large x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_7_large_large_scc_2). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_scc_7_large_large_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' )))). apply wf_DP_R_xml_0_scc_7_large_large_scc_2. Qed. Lemma wf : well_founded WF_DP_R_xml_0_scc_7_large.DP_R_xml_0_scc_7_large_large. Proof. constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_scc_7_large_large_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_7_large_large_non_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_7_large_large_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_7_large_large_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_7_large_large_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )||(fail)))))). Qed. End WF_DP_R_xml_0_scc_7_large_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_eq (x8:Z) (x9:Z) := 0. Definition P_id_edge (x8:Z) (x9:Z) (x10:Z) := 1 + 1* x10. Definition P_id_false := 0. Definition P_id_true := 0. Definition P_id_if_reach_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_union (x8:Z) (x9:Z) := 1* x8 + 1* x9. Definition P_id_0 := 0. Definition P_id_reach (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 0. Definition P_id_or (x8:Z) (x9:Z) := 2* x9. Definition P_id_s (x8:Z) := 0. Definition P_id_if_reach_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_empty := 0. Lemma P_id_eq_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_eq x9 x11 <= P_id_eq x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_monotonic : forall x8 x12 x10 x9 x13 x11, (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_edge x9 x11 x13 <= P_id_edge x8 x10 x12. Proof. intros x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_1 x9 x11 x13 x15 x17 <= P_id_if_reach_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_union x9 x11 <= P_id_union x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_reach x9 x11 x13 x15 <= P_id_reach x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_or x9 x11 <= P_id_or x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x9, (0 <= x9)/\ (x9 <= x8) ->P_id_s x9 <= P_id_s x8. Proof. intros x9 x8. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_2 x9 x11 x13 x15 x17 <= P_id_if_reach_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_eq_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_eq x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_bounded : forall x8 x10 x9, (0 <= x8) ->(0 <= x9) ->(0 <= x10) ->0 <= P_id_edge x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_false_bounded : 0 <= P_id_false . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_true_bounded : 0 <= P_id_true . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_1 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_union x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_0_bounded : 0 <= P_id_0 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_bounded : forall x8 x10 x9 x11, (0 <= x8) -> (0 <= x9) ->(0 <= x10) ->(0 <= x11) ->0 <= P_id_reach x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_or x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x8, (0 <= x8) ->0 <= P_id_s x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_2 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_empty_bounded : 0 <= P_id_empty . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9::x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9:: x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_IF_REACH_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 1* x11 + 1* x12. Definition P_id_EQ (x8:Z) (x9:Z) := 0. Definition P_id_REACH (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 1* x10 + 1* x11. Definition P_id_OR (x8:Z) (x9:Z) := 0. Definition P_id_UNION (x8:Z) (x9:Z) := 0. Definition P_id_IF_REACH_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 1* x11 + 1* x12. Lemma P_id_IF_REACH_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_2 x9 x11 x13 x15 x17 <= P_id_IF_REACH_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_EQ_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_EQ x9 x11 <= P_id_EQ x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_REACH_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_REACH x9 x11 x13 x15 <= P_id_REACH x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_OR_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_OR x9 x11 <= P_id_OR x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_UNION_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_UNION x9 x11 <= P_id_UNION x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_IF_REACH_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_1 x9 x11 x13 x15 x17 <= P_id_IF_REACH_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty P_id_IF_REACH_2 P_id_EQ P_id_REACH P_id_OR P_id_UNION P_id_IF_REACH_1. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11::x10:: x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9:: x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. intros ;apply P_id_IF_REACH_2_monotonic;assumption. intros ;apply P_id_EQ_monotonic;assumption. intros ;apply P_id_REACH_monotonic;assumption. intros ;apply P_id_OR_monotonic;assumption. intros ;apply P_id_UNION_monotonic;assumption. intros ;apply P_id_IF_REACH_1_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_7_large_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_7_large_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_7_large_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_7_large_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_7_large_large := WF_DP_R_xml_0_scc_7_large_large.wf. Lemma wf : well_founded WF_DP_R_xml_0_scc_7.DP_R_xml_0_scc_7_large. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_7_large_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_7_large_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_7_large_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_7_large_large. Qed. End WF_DP_R_xml_0_scc_7_large. Open Scope Z_scope. Import ring_extention. Notation Local "a <= b" := (Zle a b). Notation Local "a < b" := (Zlt a b). Definition P_id_eq (x8:Z) (x9:Z) := 0. Definition P_id_edge (x8:Z) (x9:Z) (x10:Z) := 1 + 1* x10. Definition P_id_false := 0. Definition P_id_true := 0. Definition P_id_if_reach_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_union (x8:Z) (x9:Z) := 1* x8 + 1* x9. Definition P_id_0 := 0. Definition P_id_reach (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 0. Definition P_id_or (x8:Z) (x9:Z) := 2* x9. Definition P_id_s (x8:Z) := 0. Definition P_id_if_reach_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 0. Definition P_id_empty := 1. Lemma P_id_eq_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_eq x9 x11 <= P_id_eq x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_monotonic : forall x8 x12 x10 x9 x13 x11, (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_edge x9 x11 x13 <= P_id_edge x8 x10 x12. Proof. intros x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_1 x9 x11 x13 x15 x17 <= P_id_if_reach_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_union x9 x11 <= P_id_union x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_reach x9 x11 x13 x15 <= P_id_reach x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_or x9 x11 <= P_id_or x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_monotonic : forall x8 x9, (0 <= x9)/\ (x9 <= x8) ->P_id_s x9 <= P_id_s x8. Proof. intros x9 x8. intros [H_1 H_0]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_if_reach_2 x9 x11 x13 x15 x17 <= P_id_if_reach_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_eq_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_eq x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_edge_bounded : forall x8 x10 x9, (0 <= x8) ->(0 <= x9) ->(0 <= x10) ->0 <= P_id_edge x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_false_bounded : 0 <= P_id_false . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_true_bounded : 0 <= P_id_true . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_1_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_1 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_union_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_union x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_0_bounded : 0 <= P_id_0 . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_reach_bounded : forall x8 x10 x9 x11, (0 <= x8) -> (0 <= x9) ->(0 <= x10) ->(0 <= x11) ->0 <= P_id_reach x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_or_bounded : forall x8 x9, (0 <= x8) ->(0 <= x9) ->0 <= P_id_or x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_s_bounded : forall x8, (0 <= x8) ->0 <= P_id_s x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_if_reach_2_bounded : forall x8 x12 x10 x9 x11, (0 <= x8) -> (0 <= x9) -> (0 <= x10) -> (0 <= x11) ->(0 <= x12) ->0 <= P_id_if_reach_2 x12 x11 x10 x9 x8. Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_empty_bounded : 0 <= P_id_empty . Proof. intros . cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition measure := InterpZ.measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty. Lemma measure_equation : forall t, measure t = match t with | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_eq (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_edge (x10::x9::x8::nil)) => P_id_edge (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_false nil) => P_id_false | (algebra.Alg.Term algebra.F.id_true nil) => P_id_true | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9::x8::nil)) => P_id_union (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_0 nil) => P_id_0 | (algebra.Alg.Term algebra.F.id_reach (x11::x10::x9:: x8::nil)) => P_id_reach (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_or (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_s (x8::nil)) => P_id_s (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12::x11:: x10::x9::x8::nil)) => P_id_if_reach_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_empty nil) => P_id_empty | _ => 0 end. Proof. intros t;case t;intros ;apply refl_equal. Qed. Lemma measure_bounded : forall t, 0 <= measure t. Proof. unfold measure in |-*. apply InterpZ.measure_bounded; cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Ltac generate_pos_hyp := match goal with | H:context [measure ?x] |- _ => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) | |- context [measure ?x] => let v := fresh "v" in (let H := fresh "h" in (set (H:=measure_bounded x) in *;set (v:=measure x) in *; clearbody H;clearbody v)) end . Lemma rules_monotonic : forall l r, (algebra.EQT.axiom R_xml_0_deep_rew.R_xml_0_rules r l) -> measure r <= measure l. Proof. intros l r H. fold measure in |-*. inversion H;clear H;subst;inversion H0;clear H0;subst; simpl algebra.EQT.T.apply_subst in |-*; repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) end );repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma measure_star_monotonic : forall l r, (closure.refl_trans_clos (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) r l) ->measure r <= measure l. Proof. unfold measure in *. apply InterpZ.measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. Qed. Definition P_id_IF_REACH_2 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 1* x11 + 1* x12. Definition P_id_EQ (x8:Z) (x9:Z) := 0. Definition P_id_REACH (x8:Z) (x9:Z) (x10:Z) (x11:Z) := 1* x10 + 1* x11. Definition P_id_OR (x8:Z) (x9:Z) := 0. Definition P_id_UNION (x8:Z) (x9:Z) := 0. Definition P_id_IF_REACH_1 (x8:Z) (x9:Z) (x10:Z) (x11:Z) (x12:Z) := 1* x11 + 1* x12. Lemma P_id_IF_REACH_2_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_2 x9 x11 x13 x15 x17 <= P_id_IF_REACH_2 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_EQ_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_EQ x9 x11 <= P_id_EQ x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_REACH_monotonic : forall x8 x12 x10 x14 x9 x13 x11 x15, (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_REACH x9 x11 x13 x15 <= P_id_REACH x8 x10 x12 x14. Proof. intros x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_OR_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_OR x9 x11 <= P_id_OR x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_UNION_monotonic : forall x8 x10 x9 x11, (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) ->P_id_UNION x9 x11 <= P_id_UNION x8 x10. Proof. intros x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma P_id_IF_REACH_1_monotonic : forall x16 x8 x12 x10 x14 x17 x9 x13 x11 x15, (0 <= x17)/\ (x17 <= x16) -> (0 <= x15)/\ (x15 <= x14) -> (0 <= x13)/\ (x13 <= x12) -> (0 <= x11)/\ (x11 <= x10) -> (0 <= x9)/\ (x9 <= x8) -> P_id_IF_REACH_1 x9 x11 x13 x15 x17 <= P_id_IF_REACH_1 x8 x10 x12 x14 x16. Proof. intros x17 x16 x15 x14 x13 x12 x11 x10 x9 x8. intros [H_1 H_0]. intros [H_3 H_2]. intros [H_5 H_4]. intros [H_7 H_6]. intros [H_9 H_8]. cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition marked_measure := InterpZ.marked_measure 0 P_id_eq P_id_edge P_id_false P_id_true P_id_if_reach_1 P_id_union P_id_0 P_id_reach P_id_or P_id_s P_id_if_reach_2 P_id_empty P_id_IF_REACH_2 P_id_EQ P_id_REACH P_id_OR P_id_UNION P_id_IF_REACH_1. Lemma marked_measure_equation : forall t, marked_measure t = match t with | (algebra.Alg.Term algebra.F.id_if_reach_2 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_2 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_eq (x9::x8::nil)) => P_id_EQ (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_reach (x11::x10:: x9::x8::nil)) => P_id_REACH (measure x11) (measure x10) (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_or (x9::x8::nil)) => P_id_OR (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_union (x9:: x8::nil)) => P_id_UNION (measure x9) (measure x8) | (algebra.Alg.Term algebra.F.id_if_reach_1 (x12:: x11::x10::x9::x8::nil)) => P_id_IF_REACH_1 (measure x12) (measure x11) (measure x10) (measure x9) (measure x8) | _ => measure t end. Proof. reflexivity . Qed. Lemma marked_measure_star_monotonic : forall f l1 l2, (closure.refl_trans_clos (closure.one_step_list (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules) ) l1 l2) -> marked_measure (algebra.Alg.Term f l1) <= marked_measure (algebra.Alg.Term f l2). Proof. unfold marked_measure in *. apply InterpZ.marked_measure_star_monotonic. intros ;apply P_id_eq_monotonic;assumption. intros ;apply P_id_edge_monotonic;assumption. intros ;apply P_id_if_reach_1_monotonic;assumption. intros ;apply P_id_union_monotonic;assumption. intros ;apply P_id_reach_monotonic;assumption. intros ;apply P_id_or_monotonic;assumption. intros ;apply P_id_s_monotonic;assumption. intros ;apply P_id_if_reach_2_monotonic;assumption. intros ;apply P_id_eq_bounded;assumption. intros ;apply P_id_edge_bounded;assumption. intros ;apply P_id_false_bounded;assumption. intros ;apply P_id_true_bounded;assumption. intros ;apply P_id_if_reach_1_bounded;assumption. intros ;apply P_id_union_bounded;assumption. intros ;apply P_id_0_bounded;assumption. intros ;apply P_id_reach_bounded;assumption. intros ;apply P_id_or_bounded;assumption. intros ;apply P_id_s_bounded;assumption. intros ;apply P_id_if_reach_2_bounded;assumption. intros ;apply P_id_empty_bounded;assumption. apply rules_monotonic. intros ;apply P_id_IF_REACH_2_monotonic;assumption. intros ;apply P_id_EQ_monotonic;assumption. intros ;apply P_id_REACH_monotonic;assumption. intros ;apply P_id_OR_monotonic;assumption. intros ;apply P_id_UNION_monotonic;assumption. intros ;apply P_id_IF_REACH_1_monotonic;assumption. Qed. Ltac rewrite_and_unfold := do 2 (rewrite marked_measure_equation); repeat ( match goal with | |- context [measure (algebra.Alg.Term ?f ?t)] => rewrite (measure_equation (algebra.Alg.Term f t)) | H:context [measure (algebra.Alg.Term ?f ?t)] |- _ => rewrite (measure_equation (algebra.Alg.Term f t)) in H|- end ). Definition lt a b := (Zwf.Zwf 0) (marked_measure a) (marked_measure b). Definition le a b := marked_measure a <= marked_measure b. Lemma lt_le_compat : forall a b c, (lt a b) ->(le b c) ->lt a c. Proof. unfold lt, le in *. intros a b c. apply (interp.le_lt_compat_right (interp.o_Z 0)). Qed. Lemma wf_lt : well_founded lt. Proof. unfold lt in *. apply Inverse_Image.wf_inverse_image with (B:=Z). apply Zwf.Zwf_well_founded. Qed. Lemma DP_R_xml_0_scc_7_strict_in_lt : Relation_Definitions.inclusion _ DP_R_xml_0_scc_7_strict lt. Proof. unfold Relation_Definitions.inclusion, lt in *. intros a b H;destruct H; match goal with | |- (Zwf.Zwf 0) _ (marked_measure (algebra.Alg.Term ?f ?l)) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_lt_compat_right (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Lemma DP_R_xml_0_scc_7_large_in_le : Relation_Definitions.inclusion _ DP_R_xml_0_scc_7_large le. Proof. unfold Relation_Definitions.inclusion, le, Zwf.Zwf in *. intros a b H;destruct H; match goal with | |- _ <= marked_measure (algebra.Alg.Term ?f ?l) => let l'' := algebra.Alg_ext.find_replacement l in ((apply (interp.le_trans (interp.o_Z 0)) with (marked_measure (algebra.Alg.Term f l''));[idtac| apply marked_measure_star_monotonic; repeat (apply algebra.EQT_ext.one_step_list_refl_trans_clos); (assumption)||(constructor 1)])) end ;clear ;rewrite_and_unfold ;repeat (generate_pos_hyp ); cbv beta iota zeta delta - [Zle Zlt Zplus Zmult] ;intuition; (auto with zarith)||(repeat (translate_vars );prove_ineq ). Qed. Definition wf_DP_R_xml_0_scc_7_large := WF_DP_R_xml_0_scc_7_large.wf. Lemma wf : well_founded WF_DP_R_xml_0.DP_R_xml_0_scc_7. Proof. intros x. apply (well_founded_ind wf_lt). clear x. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_7_large). clear x. intros x _ IHx IHx'. constructor. intros y H. destruct H; (apply IHx';apply DP_R_xml_0_scc_7_strict_in_lt; econstructor eassumption)|| ((apply IHx;[econstructor eassumption| intros y' Hlt;apply IHx';apply lt_le_compat with (1:=Hlt) ; apply DP_R_xml_0_scc_7_large_in_le;econstructor eassumption])). apply wf_DP_R_xml_0_scc_7_large. Qed. End WF_DP_R_xml_0_scc_7. Definition wf_DP_R_xml_0_scc_7 := WF_DP_R_xml_0_scc_7.wf. Lemma acc_DP_R_xml_0_scc_7 : forall x y, (DP_R_xml_0_scc_7 x y) ->Acc WF_R_xml_0_deep_rew.DP_R_xml_0 x. Proof. intros x. pattern x. apply (@Acc_ind _ DP_R_xml_0_scc_7). intros x' _ Hrec y h. inversion h;clear h;subst; constructor;intros _y _h;inversion _h;clear _h;subst; (eapply Hrec;econstructor eassumption)|| ((eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (eapply Hrec; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))))))). apply wf_DP_R_xml_0_scc_7. Qed. Lemma wf : well_founded WF_R_xml_0_deep_rew.DP_R_xml_0. Proof. constructor;intros _y _h;inversion _h;clear _h;subst; (eapply acc_DP_R_xml_0_non_scc_6; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_non_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_7; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_6; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_5; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_4; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_3; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_2; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_1; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((eapply acc_DP_R_xml_0_scc_0; econstructor (eassumption)||(algebra.Alg_ext.star_refl' ))|| ((R_xml_0_deep_rew.impossible_star_reduction_R_xml_0 )|| (fail)))))))))))))))). Qed. End WF_DP_R_xml_0. Definition wf_H := WF_DP_R_xml_0.wf. Lemma wf : well_founded (algebra.EQT.one_step R_xml_0_deep_rew.R_xml_0_rules). Proof. apply ddp.dp_criterion. apply R_xml_0_deep_rew.R_xml_0_non_var. apply R_xml_0_deep_rew.R_xml_0_reg. intros ; apply (ddp.constructor_defined_dec _ _ R_xml_0_deep_rew.R_xml_0_rules_included). refine (Inclusion.wf_incl _ _ _ _ wf_H). intros x y H. destruct (R_xml_0_dp_step_spec H) as [f [l1 [l2 [H1 [H2 H3]]]]]. destruct (ddp.dp_list_complete _ _ R_xml_0_deep_rew.R_xml_0_rules_included _ _ H3) as [x' [y' [sigma [h1 [h2 h3]]]]]. clear H3. subst. vm_compute in h3|-. let e := type of h3 in (dp_concl_tac h2 h3 ltac:(fun _ => idtac) e). Qed. End WF_R_xml_0_deep_rew. (* *** Local Variables: *** *** coq-prog-name: "coqtop" *** *** coq-prog-args: ("-emacs-U" "-I" "$COCCINELLE/examples" "-I" "$COCCINELLE/term_algebra" "-I" "$COCCINELLE/term_orderings" "-I" "$COCCINELLE/basis" "-I" "$COCCINELLE/list_extensions" "-I" "$COCCINELLE/examples/cime_trace/") *** *** compile-command: "coqc -I $COCCINELLE/term_algebra -I $COCCINELLE/term_orderings -I $COCCINELLE/basis -I $COCCINELLE/list_extensions -I $COCCINELLE/examples/cime_trace/ -I $COCCINELLE/examples/ c_output/strat/tpdb-5.0___TRS___AG01___3.13.trs/a3pat.v" *** *** End: *** *)