Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | concat : symb | cons : symb | false : symb | leaf : symb | less_leaves : symb | true : symb | x : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M.concat => 2 | M.cons => 2 | M.false => 0 | M.leaf => 0 | M.less_leaves => 2 | M.true => 0 | M.x => 0 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition concat x2 x1 := F0 M.concat (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition false := F0 M.false Vnil. Definition leaf := F0 M.leaf Vnil. Definition less_leaves x2 x1 := F0 M.less_leaves (Vcons x2 (Vcons x1 Vnil)). Definition true := F0 M.true Vnil. Definition x := F0 M.x Vnil. End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.concat S0.leaf (V0 0)) (V0 0) :: R0 (S0.concat (S0.cons (V0 0) (V0 1)) (V0 2)) (S0.cons (V0 0) (S0.concat (V0 1) (V0 2))) :: R0 (S0.less_leaves S0.x S0.leaf) S0.false :: R0 (S0.less_leaves S0.leaf (S0.cons (V0 0) (V0 1))) S0.true :: R0 (S0.less_leaves (S0.cons (V0 0) (V0 1)) (S0.cons (V0 2) (V0 3))) (S0.less_leaves (S0.concat (V0 0) (V0 1)) (S0.concat (V0 2) (V0 3))) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition hconcat x2 x1 := F1 (hd_symb s1_p M.concat) (Vcons x2 (Vcons x1 Vnil)). Definition concat x2 x1 := F1 (int_symb s1_p M.concat) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hfalse := F1 (hd_symb s1_p M.false) Vnil. Definition false := F1 (int_symb s1_p M.false) Vnil. Definition hleaf := F1 (hd_symb s1_p M.leaf) Vnil. Definition leaf := F1 (int_symb s1_p M.leaf) Vnil. Definition hless_leaves x2 x1 := F1 (hd_symb s1_p M.less_leaves) (Vcons x2 (Vcons x1 Vnil)). Definition less_leaves x2 x1 := F1 (int_symb s1_p M.less_leaves) (Vcons x2 (Vcons x1 Vnil)). Definition htrue := F1 (hd_symb s1_p M.true) Vnil. Definition true := F1 (int_symb s1_p M.true) Vnil. Definition hx := F1 (hd_symb s1_p M.x) Vnil. Definition x := F1 (int_symb s1_p M.x) Vnil. End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hconcat (S1.cons (V1 0) (V1 1)) (V1 2)) (S1.hconcat (V1 1) (V1 2)) :: nil) :: ( R1 (S1.hless_leaves (S1.cons (V1 0) (V1 1)) (S1.cons (V1 2) (V1 3))) (S1.hconcat (V1 2) (V1 3)) :: nil) :: ( R1 (S1.hless_leaves (S1.cons (V1 0) (V1 1)) (S1.cons (V1 2) (V1 3))) (S1.hconcat (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hless_leaves (S1.cons (V1 0) (V1 1)) (S1.cons (V1 2) (V1 3))) (S1.hless_leaves (S1.concat (V1 0) (V1 1)) (S1.concat (V1 2) (V1 3))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.concat) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.concat) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.leaf) => nil | (int_symb M.leaf) => (1%Z, Vnil) :: nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (3%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.less_leaves) => nil | (int_symb M.less_leaves) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.x) => nil | (int_symb M.x) => nil | (hd_symb M.false) => nil | (int_symb M.false) => (1%Z, Vnil) :: nil | (hd_symb M.true) => nil | (int_symb M.true) => (2%Z, Vnil) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.concat) => nil | (int_symb M.concat) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.leaf) => nil | (int_symb M.leaf) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.less_leaves) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.less_leaves) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.x) => nil | (int_symb M.x) => nil | (hd_symb M.false) => nil | (int_symb M.false) => nil | (hd_symb M.true) => nil | (int_symb M.true) => (2%Z, Vnil) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. right. PI1.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI2.prove_termination. termination_trivial. Qed.