Require Import ADPUnif. Require Import ADecomp. Require Import ADuplicateSymb. Require Import AGraph. Require Import APolyInt_MA. Require Import ATrs. Require Import List. Require Import LogicUtil. Require Import MonotonePolynom. Require Import Polynom. Require Import SN. Require Import VecUtil. Open Scope nat_scope. (* termination problem *) Module M. Inductive symb : Type := | _0_1 : symb | app : symb | cons : symb | nil : symb | plus : symb | pred : symb | s : symb | sum : symb. End M. Lemma eq_symb_dec : forall f g : M.symb, {f=g}+{~f=g}. Proof. decide equality. Defined. Open Scope nat_scope. Definition ar (s : M.symb) : nat := match s with | M._0_1 => 0 | M.app => 2 | M.cons => 2 | M.nil => 0 | M.plus => 2 | M.pred => 1 | M.s => 1 | M.sum => 1 end. Definition s0 := ASignature.mkSignature ar eq_symb_dec. Definition s0_p := s0. Definition V0 := @ATerm.Var s0. Definition F0 := @ATerm.Fun s0. Definition R0 := @ATrs.mkRule s0. Module S0. Definition _0_1 := F0 M._0_1 Vnil. Definition app x2 x1 := F0 M.app (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F0 M.cons (Vcons x2 (Vcons x1 Vnil)). Definition nil := F0 M.nil Vnil. Definition plus x2 x1 := F0 M.plus (Vcons x2 (Vcons x1 Vnil)). Definition pred x1 := F0 M.pred (Vcons x1 Vnil). Definition s x1 := F0 M.s (Vcons x1 Vnil). Definition sum x1 := F0 M.sum (Vcons x1 Vnil). End S0. Definition E := @nil (@ATrs.rule s0). Definition R := R0 (S0.app S0.nil (V0 0)) (V0 0) :: R0 (S0.app (V0 0) S0.nil) (V0 0) :: R0 (S0.app (S0.cons (V0 0) (V0 1)) (V0 2)) (S0.cons (V0 0) (S0.app (V0 1) (V0 2))) :: R0 (S0.sum (S0.cons (V0 0) S0.nil)) (S0.cons (V0 0) S0.nil) :: R0 (S0.sum (S0.cons (V0 0) (S0.cons (V0 1) (V0 2)))) (S0.sum (S0.cons (S0.plus (V0 0) (V0 1)) (V0 2))) :: R0 (S0.sum (S0.app (V0 0) (S0.cons (V0 1) (S0.cons (V0 2) (V0 3))))) (S0.sum (S0.app (V0 0) (S0.sum (S0.cons (V0 1) (S0.cons (V0 2) (V0 3)))))) :: R0 (S0.plus S0._0_1 (V0 0)) (V0 0) :: R0 (S0.plus (S0.s (V0 0)) (V0 1)) (S0.s (S0.plus (V0 0) (V0 1))) :: R0 (S0.sum (S0.plus (S0.cons S0._0_1 (V0 0)) (S0.cons (V0 1) (V0 2)))) (S0.pred (S0.sum (S0.cons (S0.s (V0 0)) (S0.cons (V0 1) (V0 2))))) :: R0 (S0.pred (S0.cons (S0.s (V0 0)) S0.nil)) (S0.cons (V0 0) S0.nil) :: @nil (@ATrs.rule s0). Definition rel := ATrs.red_mod E R. (* symbol marking *) Definition s1 := dup_sig s0. Definition s1_p := s0. Definition V1 := @ATerm.Var s1. Definition F1 := @ATerm.Fun s1. Definition R1 := @ATrs.mkRule s1. Module S1. Definition h_0_1 := F1 (hd_symb s1_p M._0_1) Vnil. Definition _0_1 := F1 (int_symb s1_p M._0_1) Vnil. Definition happ x2 x1 := F1 (hd_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition app x2 x1 := F1 (int_symb s1_p M.app) (Vcons x2 (Vcons x1 Vnil)). Definition hcons x2 x1 := F1 (hd_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition cons x2 x1 := F1 (int_symb s1_p M.cons) (Vcons x2 (Vcons x1 Vnil)). Definition hnil := F1 (hd_symb s1_p M.nil) Vnil. Definition nil := F1 (int_symb s1_p M.nil) Vnil. Definition hplus x2 x1 := F1 (hd_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition plus x2 x1 := F1 (int_symb s1_p M.plus) (Vcons x2 (Vcons x1 Vnil)). Definition hpred x1 := F1 (hd_symb s1_p M.pred) (Vcons x1 Vnil). Definition pred x1 := F1 (int_symb s1_p M.pred) (Vcons x1 Vnil). Definition hs x1 := F1 (hd_symb s1_p M.s) (Vcons x1 Vnil). Definition s x1 := F1 (int_symb s1_p M.s) (Vcons x1 Vnil). Definition hsum x1 := F1 (hd_symb s1_p M.sum) (Vcons x1 Vnil). Definition sum x1 := F1 (int_symb s1_p M.sum) (Vcons x1 Vnil). End S1. (* graph decomposition 1 *) Definition cs1 : list (list (@ATrs.rule s1)) := ( R1 (S1.hsum (S1.plus (S1.cons (S1._0_1) (V1 0)) (S1.cons (V1 1) (V1 2)))) (S1.hpred (S1.sum (S1.cons (S1.s (V1 0)) (S1.cons (V1 1) (V1 2))))) :: nil) :: ( R1 (S1.hplus (S1.s (V1 0)) (V1 1)) (S1.hplus (V1 0) (V1 1)) :: nil) :: ( R1 (S1.hsum (S1.cons (V1 0) (S1.cons (V1 1) (V1 2)))) (S1.hplus (V1 0) (V1 1)) :: nil) :: ( R1 (S1.happ (S1.cons (V1 0) (V1 1)) (V1 2)) (S1.happ (V1 1) (V1 2)) :: nil) :: ( R1 (S1.hsum (S1.app (V1 0) (S1.cons (V1 1) (S1.cons (V1 2) (V1 3))))) (S1.happ (V1 0) (S1.sum (S1.cons (V1 1) (S1.cons (V1 2) (V1 3))))) :: nil) :: ( R1 (S1.hsum (S1.cons (V1 0) (S1.cons (V1 1) (V1 2)))) (S1.hsum (S1.cons (S1.plus (V1 0) (V1 1)) (V1 2))) :: nil) :: ( R1 (S1.hsum (S1.plus (S1.cons (S1._0_1) (V1 0)) (S1.cons (V1 1) (V1 2)))) (S1.hsum (S1.cons (S1.s (V1 0)) (S1.cons (V1 1) (V1 2)))) :: nil) :: ( R1 (S1.hsum (S1.app (V1 0) (S1.cons (V1 1) (S1.cons (V1 2) (V1 3))))) (S1.hsum (S1.cons (V1 1) (S1.cons (V1 2) (V1 3)))) :: nil) :: ( R1 (S1.hsum (S1.app (V1 0) (S1.cons (V1 1) (S1.cons (V1 2) (V1 3))))) (S1.hsum (S1.app (V1 0) (S1.sum (S1.cons (V1 1) (S1.cons (V1 2) (V1 3)))))) :: nil) :: nil. (* polynomial interpretation 1 *) Module PIS1 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => nil | (hd_symb M.sum) => nil | (int_symb M.sum) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.plus) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.plus) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (3%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (2%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.pred) => nil | (int_symb M.pred) => (1%Z, (Vcons 0 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS1. Module PI1 := PolyInt PIS1. (* polynomial interpretation 2 *) Module PIS2 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.app) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.sum) => nil | (int_symb M.sum) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.plus) => nil | (int_symb M.plus) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (3%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (3%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.pred) => nil | (int_symb M.pred) => (2%Z, (Vcons 0 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS2. Module PI2 := PolyInt PIS2. (* polynomial interpretation 3 *) Module PIS3 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.app) => nil | (int_symb M.app) => (1%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.sum) => (1%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.sum) => (2%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.plus) => nil | (int_symb M.plus) => (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.s) => nil | (int_symb M.s) => nil | (hd_symb M.pred) => nil | (int_symb M.pred) => (2%Z, (Vcons 0 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS3. Module PI3 := PolyInt PIS3. (* polynomial interpretation 4 *) Module PIS4 (*<: TPolyInt*). Definition sig := s1. Definition trsInt f := match f as f return poly (@ASignature.arity s1 f) with | (hd_symb M.app) => nil | (int_symb M.app) => (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (2%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.nil) => nil | (int_symb M.nil) => nil | (hd_symb M.cons) => nil | (int_symb M.cons) => (1%Z, (Vcons 0 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M.sum) => (2%Z, (Vcons 1 Vnil)) :: nil | (int_symb M.sum) => (1%Z, (Vcons 0 Vnil)) :: nil | (hd_symb M.plus) => nil | (int_symb M.plus) => (2%Z, (Vcons 0 (Vcons 0 Vnil))) :: (2%Z, (Vcons 1 (Vcons 0 Vnil))) :: (1%Z, (Vcons 0 (Vcons 1 Vnil))) :: nil | (hd_symb M._0_1) => nil | (int_symb M._0_1) => nil | (hd_symb M.s) => nil | (int_symb M.s) => (3%Z, (Vcons 0 Vnil)) :: (1%Z, (Vcons 1 Vnil)) :: nil | (hd_symb M.pred) => nil | (int_symb M.pred) => (1%Z, (Vcons 0 Vnil)) :: nil end. Lemma trsInt_wm : forall f, pweak_monotone (trsInt f). Proof. pmonotone. Qed. End PIS4. Module PI4 := PolyInt PIS4. (* termination proof *) Lemma termination : WF rel. Proof. unfold rel. dp_trans. mark. let D := fresh "D" in let R := fresh "R" in set_rules_to D; set_mod_rules_to R; graph_decomp (dpg_unif_N 100 R D) cs1; subst D; subst R. dpg_unif_N_correct. left. co_scc. right. PI1.prove_termination. termination_trivial. left. co_scc. right. PI2.prove_termination. termination_trivial. left. co_scc. right. PI3.prove_termination. termination_trivial. left. co_scc. left. co_scc. right. PI4.prove_termination. termination_trivial. Qed.