| del#( .( x , .( y , z ) ) ) | → | f#( =( x , y ) , x , y , z ) |
| del#( .( x , .( y , z ) ) ) | → | =#( x , y ) |
| f#( true , x , y , z ) | → | del#( .( y , z ) ) |
| f#( false , x , y , z ) | → | del#( .( y , z ) ) |
| =#( .( x , y ) , .( u , v ) ) | → | =#( x , u ) |
| =#( .( x , y ) , .( u , v ) ) | → | =#( y , v ) |
The dependency pairs are split into 1 component(s).
| f#( true , x , y , z ) | → | del#( .( y , z ) ) |
| del#( .( x , .( y , z ) ) ) | → | f#( =( x , y ) , x , y , z ) |
| f#( false , x , y , z ) | → | del#( .( y , z ) ) |
Linear polynomial interpretation over the naturals
| [true] | = | 2 | |
| [v] | = | 0 | |
| [u] | = | 0 | |
| [and (x1, x2) ] | = | x1 | |
| [f (x1, ..., x4) ] | = | 2 x1 + 2 x2 + 2 | |
| [del# (x1) ] | = | x1 + 1 | |
| [false] | = | 2 | |
| [f# (x1, ..., x4) ] | = | x1 + 3 | |
| [= (x1, x2) ] | = | 2 | |
| [. (x1, x2) ] | = | x1 + 1 | |
| [nil] | = | 0 | |
| [del (x1) ] | = | 2 x1 + 2 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| del#( .( x , .( y , z ) ) ) | → | f#( =( x , y ) , x , y , z ) |
The dependency pairs are split into 0 component(s).