| fst#( s( X ) , cons( Y , Z ) ) | → | activate#( X ) |
| fst#( s( X ) , cons( Y , Z ) ) | → | activate#( Z ) |
| add#( s( X ) , Y ) | → | s#( n__add( activate( X ) , Y ) ) |
| add#( s( X ) , Y ) | → | activate#( X ) |
| len#( cons( X , Z ) ) | → | s#( n__len( activate( Z ) ) ) |
| len#( cons( X , Z ) ) | → | activate#( Z ) |
| activate#( n__fst( X1 , X2 ) ) | → | fst#( activate( X1 ) , activate( X2 ) ) |
| activate#( n__fst( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__fst( X1 , X2 ) ) | → | activate#( X2 ) |
| activate#( n__from( X ) ) | → | from#( activate( X ) ) |
| activate#( n__from( X ) ) | → | activate#( X ) |
| activate#( n__s( X ) ) | → | s#( X ) |
| activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
| activate#( n__len( X ) ) | → | len#( activate( X ) ) |
| activate#( n__len( X ) ) | → | activate#( X ) |
The dependency pairs are split into 1 component(s).
| activate#( n__fst( X1 , X2 ) ) | → | fst#( activate( X1 ) , activate( X2 ) ) |
| fst#( s( X ) , cons( Y , Z ) ) | → | activate#( X ) |
| activate#( n__fst( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__fst( X1 , X2 ) ) | → | activate#( X2 ) |
| activate#( n__from( X ) ) | → | activate#( X ) |
| activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
| add#( s( X ) , Y ) | → | activate#( X ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
| activate#( n__len( X ) ) | → | len#( activate( X ) ) |
| len#( cons( X , Z ) ) | → | activate#( Z ) |
| activate#( n__len( X ) ) | → | activate#( X ) |
| fst#( s( X ) , cons( Y , Z ) ) | → | activate#( Z ) |
Linear polynomial interpretation over the naturals
| [from (x1) ] | = | x1 + 1 | |
| [fst (x1, x2) ] | = | x1 + x2 | |
| [n__from (x1) ] | = | x1 + 1 | |
| [n__s (x1) ] | = | x1 | |
| [0] | = | 0 | |
| [add# (x1, x2) ] | = | x1 + x2 | |
| [len# (x1) ] | = | x1 | |
| [nil] | = | 0 | |
| [cons (x1, x2) ] | = | x1 | |
| [activate (x1) ] | = | x1 | |
| [len (x1) ] | = | x1 | |
| [n__add (x1, x2) ] | = | x1 + x2 | |
| [activate# (x1) ] | = | x1 | |
| [fst# (x1, x2) ] | = | x1 + x2 | |
| [n__fst (x1, x2) ] | = | x1 + x2 | |
| [add (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | x1 | |
| [n__len (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| activate#( n__fst( X1 , X2 ) ) | → | fst#( activate( X1 ) , activate( X2 ) ) |
| fst#( s( X ) , cons( Y , Z ) ) | → | activate#( X ) |
| activate#( n__fst( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__fst( X1 , X2 ) ) | → | activate#( X2 ) |
| activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
| add#( s( X ) , Y ) | → | activate#( X ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
| activate#( n__len( X ) ) | → | len#( activate( X ) ) |
| len#( cons( X , Z ) ) | → | activate#( Z ) |
| activate#( n__len( X ) ) | → | activate#( X ) |
| fst#( s( X ) , cons( Y , Z ) ) | → | activate#( Z ) |
Linear polynomial interpretation over the naturals
| [from (x1) ] | = | 0 | |
| [fst (x1, x2) ] | = | x1 + x2 + 2 | |
| [n__from (x1) ] | = | 0 | |
| [n__s (x1) ] | = | x1 | |
| [0] | = | 3 | |
| [add# (x1, x2) ] | = | 2 x1 | |
| [len# (x1) ] | = | 2 x1 | |
| [nil] | = | 2 | |
| [cons (x1, x2) ] | = | x1 | |
| [activate (x1) ] | = | x1 | |
| [len (x1) ] | = | 2 x1 | |
| [n__add (x1, x2) ] | = | x1 + x2 | |
| [activate# (x1) ] | = | 2 x1 | |
| [fst# (x1, x2) ] | = | 2 x1 + 2 x2 + 3 | |
| [n__fst (x1, x2) ] | = | x1 + x2 + 2 | |
| [add (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | x1 | |
| [n__len (x1) ] | = | 2 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
| add#( s( X ) , Y ) | → | activate#( X ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
| activate#( n__len( X ) ) | → | len#( activate( X ) ) |
| len#( cons( X , Z ) ) | → | activate#( Z ) |
| activate#( n__len( X ) ) | → | activate#( X ) |
Linear polynomial interpretation over the naturals
| [from (x1) ] | = | 1 | |
| [fst (x1, x2) ] | = | 1 | |
| [n__from (x1) ] | = | 1 | |
| [n__s (x1) ] | = | x1 | |
| [0] | = | 0 | |
| [add# (x1, x2) ] | = | x1 + x2 | |
| [len# (x1) ] | = | x1 | |
| [nil] | = | 1 | |
| [cons (x1, x2) ] | = | x1 | |
| [activate (x1) ] | = | x1 | |
| [len (x1) ] | = | x1 + 2 | |
| [n__add (x1, x2) ] | = | x1 + x2 | |
| [activate# (x1) ] | = | x1 | |
| [n__fst (x1, x2) ] | = | 1 | |
| [add (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | x1 | |
| [n__len (x1) ] | = | x1 + 2 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
| add#( s( X ) , Y ) | → | activate#( X ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
| len#( cons( X , Z ) ) | → | activate#( Z ) |
The dependency pairs are split into 1 component(s).
| add#( s( X ) , Y ) | → | activate#( X ) |
| activate#( n__add( X1 , X2 ) ) | → | add#( activate( X1 ) , activate( X2 ) ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X1 ) |
| activate#( n__add( X1 , X2 ) ) | → | activate#( X2 ) |
Linear polynomial interpretation over the naturals
| [from (x1) ] | = | 1 | |
| [fst (x1, x2) ] | = | 0 | |
| [n__from (x1) ] | = | 1 | |
| [n__s (x1) ] | = | x1 | |
| [0] | = | 0 | |
| [add# (x1, x2) ] | = | 2 x1 + 2 | |
| [nil] | = | 0 | |
| [cons (x1, x2) ] | = | 0 | |
| [activate (x1) ] | = | x1 | |
| [len (x1) ] | = | 0 | |
| [n__add (x1, x2) ] | = | x1 + 2 x2 + 1 | |
| [activate# (x1) ] | = | 2 x1 + 2 | |
| [n__fst (x1, x2) ] | = | 0 | |
| [add (x1, x2) ] | = | x1 + 2 x2 + 1 | |
| [s (x1) ] | = | x1 | |
| [n__len (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| add#( s( X ) , Y ) | → | activate#( X ) |
The dependency pairs are split into 0 component(s).