| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__U12#( tt , V2 ) | → | a__U13#( a__isNat( V2 ) ) |
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__U21#( tt , V1 ) | → | a__U22#( a__isNat( V1 ) ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__U31#( tt , N ) | → | mark#( N ) |
| a__U41#( tt , M , N ) | → | a__plus#( mark( N ) , mark( M ) ) |
| a__U41#( tt , M , N ) | → | mark#( N ) |
| a__U41#( tt , M , N ) | → | mark#( M ) |
| a__and#( tt , X ) | → | mark#( X ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__U11#( a__and( a__isNatKind( V1 ) , isNatKind( V2 ) ) , V1 , V2 ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__plus#( N , 0 ) | → | a__U31#( a__and( a__isNat( N ) , isNatKind( N ) ) , N ) |
| a__plus#( N , 0 ) | → | a__and#( a__isNat( N ) , isNatKind( N ) ) |
| a__plus#( N , 0 ) | → | a__isNat#( N ) |
| a__plus#( N , s( M ) ) | → | a__U41#( a__and( a__and( a__isNat( M ) , isNatKind( M ) ) , and( isNat( N ) , isNatKind( N ) ) ) , M , N ) |
| a__plus#( N , s( M ) ) | → | a__and#( a__and( a__isNat( M ) , isNatKind( M ) ) , and( isNat( N ) , isNatKind( N ) ) ) |
| a__plus#( N , s( M ) ) | → | a__and#( a__isNat( M ) , isNatKind( M ) ) |
| a__plus#( N , s( M ) ) | → | a__isNat#( M ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( U12( X1 , X2 ) ) | → | a__U12#( mark( X1 ) , X2 ) |
| mark#( U12( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| mark#( U13( X ) ) | → | a__U13#( mark( X ) ) |
| mark#( U13( X ) ) | → | mark#( X ) |
| mark#( U21( X1 , X2 ) ) | → | a__U21#( mark( X1 ) , X2 ) |
| mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U22( X ) ) | → | a__U22#( mark( X ) ) |
| mark#( U22( X ) ) | → | mark#( X ) |
| mark#( U31( X1 , X2 ) ) | → | a__U31#( mark( X1 ) , X2 ) |
| mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U41( X1 , X2 , X3 ) ) | → | a__U41#( mark( X1 ) , X2 , X3 ) |
| mark#( U41( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( plus( X1 , X2 ) ) | → | a__plus#( mark( X1 ) , mark( X2 ) ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
| mark#( s( X ) ) | → | mark#( X ) |
The dependency pairs are split into 1 component(s).
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__U11#( a__and( a__isNatKind( V1 ) , isNatKind( V2 ) ) , V1 , V2 ) |
| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( U12( X1 , X2 ) ) | → | a__U12#( mark( X1 ) , X2 ) |
| mark#( U12( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| mark#( U13( X ) ) | → | mark#( X ) |
| mark#( U21( X1 , X2 ) ) | → | a__U21#( mark( X1 ) , X2 ) |
| mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U22( X ) ) | → | mark#( X ) |
| mark#( U31( X1 , X2 ) ) | → | a__U31#( mark( X1 ) , X2 ) |
| a__U31#( tt , N ) | → | mark#( N ) |
| mark#( U31( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U41( X1 , X2 , X3 ) ) | → | a__U41#( mark( X1 ) , X2 , X3 ) |
| a__U41#( tt , M , N ) | → | a__plus#( mark( N ) , mark( M ) ) |
| a__plus#( N , 0 ) | → | a__U31#( a__and( a__isNat( N ) , isNatKind( N ) ) , N ) |
| a__plus#( N , 0 ) | → | a__and#( a__isNat( N ) , isNatKind( N ) ) |
| a__plus#( N , 0 ) | → | a__isNat#( N ) |
| a__plus#( N , s( M ) ) | → | a__U41#( a__and( a__and( a__isNat( M ) , isNatKind( M ) ) , and( isNat( N ) , isNatKind( N ) ) ) , M , N ) |
| a__U41#( tt , M , N ) | → | mark#( N ) |
| mark#( U41( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( plus( X1 , X2 ) ) | → | a__plus#( mark( X1 ) , mark( X2 ) ) |
| a__plus#( N , s( M ) ) | → | a__and#( a__and( a__isNat( M ) , isNatKind( M ) ) , and( isNat( N ) , isNatKind( N ) ) ) |
| a__plus#( N , s( M ) ) | → | a__and#( a__isNat( M ) , isNatKind( M ) ) |
| a__plus#( N , s( M ) ) | → | a__isNat#( M ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
| mark#( s( X ) ) | → | mark#( X ) |
| a__U41#( tt , M , N ) | → | mark#( M ) |
Linear polynomial interpretation over the naturals
| [U11 (x1, x2, x3) ] | = | 2 x1 | |
| [a__U41 (x1, x2, x3) ] | = | 2 x1 + x2 + x3 + 2 | |
| [isNatKind (x1) ] | = | 0 | |
| [U22 (x1) ] | = | 2 x1 | |
| [U13 (x1) ] | = | 2 x1 | |
| [a__U22 (x1) ] | = | 2 x1 | |
| [a__U13 (x1) ] | = | 2 x1 | |
| [U12 (x1, x2) ] | = | 2 x1 | |
| [0] | = | 2 | |
| [a__plus (x1, x2) ] | = | x1 + x2 | |
| [U41 (x1, x2, x3) ] | = | 2 x1 + x2 + x3 + 2 | |
| [a__U12# (x1, x2) ] | = | 3 | |
| [a__U11# (x1, x2, x3) ] | = | 3 | |
| [a__U31 (x1, x2) ] | = | 2 x1 + x2 + 2 | |
| [U21 (x1, x2) ] | = | 2 x1 | |
| [and (x1, x2) ] | = | x1 + 2 x2 | |
| [U31 (x1, x2) ] | = | 2 x1 + x2 + 2 | |
| [a__U31# (x1, x2) ] | = | 2 x1 + 3 | |
| [s (x1) ] | = | x1 + 2 | |
| [mark (x1) ] | = | x1 | |
| [a__U21 (x1, x2) ] | = | 2 x1 | |
| [a__U12 (x1, x2) ] | = | 2 x1 | |
| [a__and# (x1, x2) ] | = | 2 x1 + 3 | |
| [mark# (x1) ] | = | 2 x1 + 3 | |
| [tt] | = | 0 | |
| [a__isNat# (x1) ] | = | 3 | |
| [a__and (x1, x2) ] | = | x1 + 2 x2 | |
| [isNat (x1) ] | = | 0 | |
| [a__U11 (x1, x2, x3) ] | = | 2 x1 | |
| [a__U21# (x1, x2) ] | = | 3 | |
| [a__isNatKind (x1) ] | = | 0 | |
| [a__U41# (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 3 | |
| [plus (x1, x2) ] | = | x1 + x2 | |
| [a__isNat (x1) ] | = | 0 | |
| [a__plus# (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [a__isNatKind# (x1) ] | = | 3 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__U11#( a__and( a__isNatKind( V1 ) , isNatKind( V2 ) ) , V1 , V2 ) |
| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( U12( X1 , X2 ) ) | → | a__U12#( mark( X1 ) , X2 ) |
| mark#( U12( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| mark#( U13( X ) ) | → | mark#( X ) |
| mark#( U21( X1 , X2 ) ) | → | a__U21#( mark( X1 ) , X2 ) |
| mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U22( X ) ) | → | mark#( X ) |
| a__U31#( tt , N ) | → | mark#( N ) |
| a__U41#( tt , M , N ) | → | mark#( N ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
| a__U41#( tt , M , N ) | → | mark#( M ) |
The dependency pairs are split into 1 component(s).
| a__isNat#( plus( V1 , V2 ) ) | → | a__U11#( a__and( a__isNatKind( V1 ) , isNatKind( V2 ) ) , V1 , V2 ) |
| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__isNat#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( U12( X1 , X2 ) ) | → | a__U12#( mark( X1 ) , X2 ) |
| mark#( U12( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| mark#( U13( X ) ) | → | mark#( X ) |
| mark#( U21( X1 , X2 ) ) | → | a__U21#( mark( X1 ) , X2 ) |
| mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U22( X ) ) | → | mark#( X ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( plus( X1 , X2 ) ) | → | mark#( X2 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
Linear polynomial interpretation over the naturals
| [U11 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 | |
| [a__U41 (x1, x2, x3) ] | = | 3 x1 + x2 + 1 | |
| [isNatKind (x1) ] | = | 0 | |
| [U22 (x1) ] | = | x1 | |
| [U13 (x1) ] | = | x1 | |
| [a__U22 (x1) ] | = | x1 | |
| [a__U13 (x1) ] | = | x1 | |
| [U12 (x1, x2) ] | = | x1 + 2 x2 | |
| [a__plus (x1, x2) ] | = | x1 + 3 x2 + 1 | |
| [0] | = | 1 | |
| [U41 (x1, x2, x3) ] | = | 3 x1 + x2 + 1 | |
| [a__U12# (x1, x2) ] | = | x1 | |
| [a__U11# (x1, x2, x3) ] | = | x1 + 3 x2 | |
| [a__U31 (x1, x2) ] | = | x1 + 1 | |
| [U21 (x1, x2) ] | = | 2 x1 + x2 | |
| [U31 (x1, x2) ] | = | x1 + 1 | |
| [and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [s (x1) ] | = | x1 | |
| [mark (x1) ] | = | x1 | |
| [a__U21 (x1, x2) ] | = | 2 x1 + x2 | |
| [a__and# (x1, x2) ] | = | 2 x1 | |
| [a__U12 (x1, x2) ] | = | x1 + 2 x2 | |
| [mark# (x1) ] | = | 2 x1 | |
| [tt] | = | 0 | |
| [a__isNat# (x1) ] | = | x1 | |
| [a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [isNat (x1) ] | = | x1 | |
| [a__U11 (x1, x2, x3) ] | = | 2 x1 + x2 + 2 x3 | |
| [a__U21# (x1, x2) ] | = | x1 | |
| [a__isNatKind (x1) ] | = | 0 | |
| [plus (x1, x2) ] | = | x1 + 3 x2 + 1 | |
| [a__isNat (x1) ] | = | x1 | |
| [a__isNatKind# (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( U12( X1 , X2 ) ) | → | a__U12#( mark( X1 ) , X2 ) |
| mark#( U12( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNat( X ) ) | → | a__isNat#( X ) |
| mark#( U13( X ) ) | → | mark#( X ) |
| mark#( U21( X1 , X2 ) ) | → | a__U21#( mark( X1 ) , X2 ) |
| mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U22( X ) ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
Linear polynomial interpretation over the naturals
| [U11 (x1, x2, x3) ] | = | x1 | |
| [a__U41 (x1, x2, x3) ] | = | 0 | |
| [isNatKind (x1) ] | = | 0 | |
| [U22 (x1) ] | = | x1 | |
| [U13 (x1) ] | = | x1 | |
| [a__U22 (x1) ] | = | x1 | |
| [a__U13 (x1) ] | = | x1 | |
| [U12 (x1, x2) ] | = | x1 | |
| [a__plus (x1, x2) ] | = | 2 x1 + 1 | |
| [0] | = | 0 | |
| [U41 (x1, x2, x3) ] | = | 0 | |
| [a__U12# (x1, x2) ] | = | 0 | |
| [a__U11# (x1, x2, x3) ] | = | 0 | |
| [a__U31 (x1, x2) ] | = | 2 x1 + 1 | |
| [U21 (x1, x2) ] | = | x1 | |
| [U31 (x1, x2) ] | = | 2 x1 | |
| [and (x1, x2) ] | = | x1 + x2 | |
| [s (x1) ] | = | 0 | |
| [mark (x1) ] | = | 2 x1 + 1 | |
| [a__U21 (x1, x2) ] | = | x1 | |
| [a__and# (x1, x2) ] | = | 2 x1 | |
| [a__U12 (x1, x2) ] | = | x1 | |
| [mark# (x1) ] | = | 2 x1 | |
| [a__isNat# (x1) ] | = | 0 | |
| [tt] | = | 1 | |
| [a__and (x1, x2) ] | = | x1 + 2 x2 | |
| [isNat (x1) ] | = | 1 | |
| [a__U11 (x1, x2, x3) ] | = | x1 | |
| [a__U21# (x1, x2) ] | = | 0 | |
| [a__isNatKind (x1) ] | = | 1 | |
| [plus (x1, x2) ] | = | 2 x1 + 1 | |
| [a__isNat (x1) ] | = | 1 | |
| [a__isNatKind# (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( U12( X1 , X2 ) ) | → | a__U12#( mark( X1 ) , X2 ) |
| mark#( U12( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U13( X ) ) | → | mark#( X ) |
| mark#( U21( X1 , X2 ) ) | → | a__U21#( mark( X1 ) , X2 ) |
| mark#( U21( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U22( X ) ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
Linear polynomial interpretation over the naturals
| [U11 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 3 x3 | |
| [a__U41 (x1, x2, x3) ] | = | 2 x1 + x2 + 3 | |
| [isNatKind (x1) ] | = | 0 | |
| [U22 (x1) ] | = | x1 + 1 | |
| [a__U22 (x1) ] | = | x1 + 1 | |
| [U13 (x1) ] | = | x1 | |
| [a__U13 (x1) ] | = | x1 | |
| [U12 (x1, x2) ] | = | x1 + 3 x2 | |
| [a__plus (x1, x2) ] | = | x1 + 2 x2 + 1 | |
| [0] | = | 0 | |
| [U41 (x1, x2, x3) ] | = | 2 x1 + x2 + 3 | |
| [a__U12# (x1, x2) ] | = | x1 + x2 | |
| [a__U11# (x1, x2, x3) ] | = | 2 x1 + 2 x2 | |
| [a__U31 (x1, x2) ] | = | x1 | |
| [U21 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
| [U31 (x1, x2) ] | = | x1 | |
| [and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [s (x1) ] | = | x1 + 2 | |
| [mark (x1) ] | = | x1 | |
| [a__U21 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
| [a__and# (x1, x2) ] | = | x1 | |
| [a__U12 (x1, x2) ] | = | x1 + 3 x2 | |
| [mark# (x1) ] | = | x1 | |
| [a__isNat# (x1) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [isNat (x1) ] | = | 2 x1 | |
| [a__U11 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 3 x3 | |
| [a__U21# (x1, x2) ] | = | x1 | |
| [a__isNatKind (x1) ] | = | 0 | |
| [plus (x1, x2) ] | = | x1 + 2 x2 + 1 | |
| [a__isNat (x1) ] | = | 2 x1 | |
| [a__isNatKind# (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | a__U11#( mark( X1 ) , X2 , X3 ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| mark#( U11( X1 , X2 , X3 ) ) | → | mark#( X1 ) |
| mark#( U12( X1 , X2 ) ) | → | a__U12#( mark( X1 ) , X2 ) |
| mark#( U12( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( U13( X ) ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
Linear polynomial interpretation over the naturals
| [a__U41 (x1, x2, x3) ] | = | 2 x1 + 2 | |
| [U11 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 x3 + 2 | |
| [isNatKind (x1) ] | = | 0 | |
| [U22 (x1) ] | = | 1 | |
| [a__U22 (x1) ] | = | 2 | |
| [U13 (x1) ] | = | x1 + 3 | |
| [a__U13 (x1) ] | = | x1 + 3 | |
| [U12 (x1, x2) ] | = | x1 + 2 x2 + 2 | |
| [a__plus (x1, x2) ] | = | 2 x1 + 3 x2 + 3 | |
| [0] | = | 1 | |
| [U41 (x1, x2, x3) ] | = | 2 x1 + 1 | |
| [a__U12# (x1, x2) ] | = | 3 x1 | |
| [a__U11# (x1, x2, x3) ] | = | 3 x1 + 3 x2 | |
| [U21 (x1, x2) ] | = | 1 | |
| [a__U31 (x1, x2) ] | = | 2 x1 + 3 | |
| [U31 (x1, x2) ] | = | x1 + 2 | |
| [and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [s (x1) ] | = | 2 | |
| [mark (x1) ] | = | 2 x1 | |
| [a__U21 (x1, x2) ] | = | 2 | |
| [a__and# (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [a__U12 (x1, x2) ] | = | x1 + 2 x2 + 3 | |
| [mark# (x1) ] | = | 2 x1 | |
| [a__isNat# (x1) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [isNat (x1) ] | = | x1 | |
| [a__U11 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 3 x3 + 3 | |
| [a__U21# (x1, x2) ] | = | 0 | |
| [a__isNatKind (x1) ] | = | 0 | |
| [plus (x1, x2) ] | = | 2 x1 + 3 x2 + 3 | |
| [a__isNat (x1) ] | = | x1 | |
| [a__isNatKind# (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__U11#( tt , V1 , V2 ) | → | a__U12#( a__isNat( V1 ) , V2 ) |
| a__U12#( tt , V2 ) | → | a__isNat#( V2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| a__U11#( tt , V1 , V2 ) | → | a__isNat#( V1 ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
| a__isNat#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
The dependency pairs are split into 2 component(s).
| a__isNat#( s( V1 ) ) | → | a__U21#( a__isNatKind( V1 ) , V1 ) |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
Linear polynomial interpretation over the naturals
| [U11 (x1, x2, x3) ] | = | 0 | |
| [a__U41 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 | |
| [isNatKind (x1) ] | = | 1 | |
| [U22 (x1) ] | = | 0 | |
| [U13 (x1) ] | = | 0 | |
| [a__U22 (x1) ] | = | 0 | |
| [a__U13 (x1) ] | = | 0 | |
| [U12 (x1, x2) ] | = | 0 | |
| [0] | = | 0 | |
| [a__plus (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [U41 (x1, x2, x3) ] | = | 2 x1 + 2 x2 + 2 | |
| [U21 (x1, x2) ] | = | 0 | |
| [a__U31 (x1, x2) ] | = | x1 | |
| [U31 (x1, x2) ] | = | x1 | |
| [and (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | x1 + 2 | |
| [mark (x1) ] | = | x1 | |
| [a__U21 (x1, x2) ] | = | 0 | |
| [a__U12 (x1, x2) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__isNat# (x1) ] | = | 2 x1 + 3 | |
| [a__and (x1, x2) ] | = | x1 | |
| [isNat (x1) ] | = | 0 | |
| [a__U11 (x1, x2, x3) ] | = | 0 | |
| [a__U21# (x1, x2) ] | = | x1 + 2 x2 + 3 | |
| [a__isNatKind (x1) ] | = | 1 | |
| [plus (x1, x2) ] | = | 2 x1 + 2 x2 | |
| [a__isNat (x1) ] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| a__U21#( tt , V1 ) | → | a__isNat#( V1 ) |
The dependency pairs are split into 0 component(s).
| mark#( and( X1 , X2 ) ) | → | a__and#( mark( X1 ) , X2 ) |
| a__and#( tt , X ) | → | mark#( X ) |
| mark#( and( X1 , X2 ) ) | → | mark#( X1 ) |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__and#( a__isNatKind( V1 ) , isNatKind( V2 ) ) |
| a__isNatKind#( plus( V1 , V2 ) ) | → | a__isNatKind#( V1 ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
Linear polynomial interpretation over the naturals
| [U11 (x1, x2, x3) ] | = | 0 | |
| [a__U41 (x1, x2, x3) ] | = | x1 + x2 + 3 | |
| [isNatKind (x1) ] | = | x1 | |
| [U22 (x1) ] | = | 0 | |
| [U13 (x1) ] | = | 0 | |
| [a__U22 (x1) ] | = | 0 | |
| [a__U13 (x1) ] | = | 0 | |
| [U12 (x1, x2) ] | = | 0 | |
| [0] | = | 0 | |
| [a__plus (x1, x2) ] | = | x1 + x2 + 3 | |
| [U41 (x1, x2, x3) ] | = | x1 + x2 + 3 | |
| [a__U31 (x1, x2) ] | = | x1 + 2 | |
| [U21 (x1, x2) ] | = | 0 | |
| [U31 (x1, x2) ] | = | x1 + 2 | |
| [and (x1, x2) ] | = | x1 + x2 + 3 | |
| [s (x1) ] | = | x1 | |
| [mark (x1) ] | = | x1 | |
| [a__U21 (x1, x2) ] | = | 0 | |
| [a__U12 (x1, x2) ] | = | 0 | |
| [a__and# (x1, x2) ] | = | 3 x1 + 3 | |
| [mark# (x1) ] | = | 3 x1 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | x1 + x2 + 3 | |
| [isNat (x1) ] | = | 0 | |
| [a__U11 (x1, x2, x3) ] | = | 0 | |
| [a__isNatKind (x1) ] | = | x1 | |
| [plus (x1, x2) ] | = | x1 + x2 + 3 | |
| [a__isNat (x1) ] | = | 0 | |
| [a__isNatKind# (x1) ] | = | 3 x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| mark#( isNatKind( X ) ) | → | a__isNatKind#( X ) |
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
The dependency pairs are split into 1 component(s).
| a__isNatKind#( s( V1 ) ) | → | a__isNatKind#( V1 ) |
Linear polynomial interpretation over the naturals
| [U11 (x1, x2, x3) ] | = | 0 | |
| [a__U41 (x1, x2, x3) ] | = | x1 + x2 + 1 | |
| [isNatKind (x1) ] | = | 0 | |
| [U22 (x1) ] | = | 0 | |
| [U13 (x1) ] | = | 2 x1 | |
| [a__U22 (x1) ] | = | 0 | |
| [a__U13 (x1) ] | = | 2 x1 | |
| [U12 (x1, x2) ] | = | 0 | |
| [0] | = | 0 | |
| [a__plus (x1, x2) ] | = | x1 + x2 | |
| [U41 (x1, x2, x3) ] | = | x1 + x2 + 1 | |
| [U21 (x1, x2) ] | = | 0 | |
| [a__U31 (x1, x2) ] | = | x1 | |
| [U31 (x1, x2) ] | = | x1 | |
| [and (x1, x2) ] | = | x1 | |
| [s (x1) ] | = | x1 + 1 | |
| [mark (x1) ] | = | x1 | |
| [a__U21 (x1, x2) ] | = | 0 | |
| [a__U12 (x1, x2) ] | = | 0 | |
| [tt] | = | 0 | |
| [a__and (x1, x2) ] | = | x1 | |
| [isNat (x1) ] | = | 0 | |
| [a__U11 (x1, x2, x3) ] | = | 0 | |
| [a__isNatKind (x1) ] | = | 0 | |
| [plus (x1, x2) ] | = | x1 + x2 | |
| [a__isNat (x1) ] | = | 0 | |
| [a__isNatKind# (x1) ] | = | x1 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.