| +#( +( x , y ) , z ) | → | +#( x , +( y , z ) ) |
| +#( +( x , y ) , z ) | → | +#( y , z ) |
| +#( p1 , +( p1 , x ) ) | → | +#( p2 , x ) |
| +#( p1 , +( p2 , +( p2 , x ) ) ) | → | +#( p5 , x ) |
| +#( p2 , p1 ) | → | +#( p1 , p2 ) |
| +#( p2 , +( p1 , x ) ) | → | +#( p1 , +( p2 , x ) ) |
| +#( p2 , +( p1 , x ) ) | → | +#( p2 , x ) |
| +#( p2 , +( p2 , p2 ) ) | → | +#( p1 , p5 ) |
| +#( p2 , +( p2 , +( p2 , x ) ) ) | → | +#( p1 , +( p5 , x ) ) |
| +#( p2 , +( p2 , +( p2 , x ) ) ) | → | +#( p5 , x ) |
| +#( p5 , p1 ) | → | +#( p1 , p5 ) |
| +#( p5 , +( p1 , x ) ) | → | +#( p1 , +( p5 , x ) ) |
| +#( p5 , +( p1 , x ) ) | → | +#( p5 , x ) |
| +#( p5 , p2 ) | → | +#( p2 , p5 ) |
| +#( p5 , +( p2 , x ) ) | → | +#( p2 , +( p5 , x ) ) |
| +#( p5 , +( p2 , x ) ) | → | +#( p5 , x ) |
| +#( p5 , +( p5 , x ) ) | → | +#( p10 , x ) |
| +#( p10 , p1 ) | → | +#( p1 , p10 ) |
| +#( p10 , +( p1 , x ) ) | → | +#( p1 , +( p10 , x ) ) |
| +#( p10 , +( p1 , x ) ) | → | +#( p10 , x ) |
| +#( p10 , p2 ) | → | +#( p2 , p10 ) |
| +#( p10 , +( p2 , x ) ) | → | +#( p2 , +( p10 , x ) ) |
| +#( p10 , +( p2 , x ) ) | → | +#( p10 , x ) |
| +#( p10 , p5 ) | → | +#( p5 , p10 ) |
| +#( p10 , +( p5 , x ) ) | → | +#( p5 , +( p10 , x ) ) |
| +#( p10 , +( p5 , x ) ) | → | +#( p10 , x ) |
The dependency pairs are split into 2 component(s).
| +#( +( x , y ) , z ) | → | +#( x , +( y , z ) ) |
Linear polynomial interpretation over the naturals
| [y] | = | 1 | |
| [z] | = | 0 | |
| [p1] | = | 0 | |
| [p10] | = | 0 | |
| [+ (x1, x2) ] | = | 2 x1 + x2 | |
| [p2] | = | 0 | |
| [+# (x1, x2) ] | = | 3 x1 | |
| [p5] | = | 0 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| none |
All dependency pairs have been removed.
| +#( p2 , +( p1 , x ) ) | → | +#( p1 , +( p2 , x ) ) |
| +#( p1 , +( p1 , x ) ) | → | +#( p2 , x ) |
| +#( p2 , +( p1 , x ) ) | → | +#( p2 , x ) |
| +#( p2 , +( p2 , +( p2 , x ) ) ) | → | +#( p1 , +( p5 , x ) ) |
| +#( p1 , +( p2 , +( p2 , x ) ) ) | → | +#( p5 , x ) |
| +#( p5 , +( p1 , x ) ) | → | +#( p1 , +( p5 , x ) ) |
| +#( p5 , +( p1 , x ) ) | → | +#( p5 , x ) |
| +#( p5 , +( p2 , x ) ) | → | +#( p2 , +( p5 , x ) ) |
| +#( p2 , +( p2 , +( p2 , x ) ) ) | → | +#( p5 , x ) |
| +#( p5 , +( p2 , x ) ) | → | +#( p5 , x ) |
| +#( p5 , +( p5 , x ) ) | → | +#( p10 , x ) |
| +#( p10 , +( p1 , x ) ) | → | +#( p1 , +( p10 , x ) ) |
| +#( p10 , +( p1 , x ) ) | → | +#( p10 , x ) |
| +#( p10 , +( p2 , x ) ) | → | +#( p2 , +( p10 , x ) ) |
| +#( p10 , +( p2 , x ) ) | → | +#( p10 , x ) |
| +#( p10 , +( p5 , x ) ) | → | +#( p5 , +( p10 , x ) ) |
| +#( p10 , +( p5 , x ) ) | → | +#( p10 , x ) |
Linear polynomial interpretation over the naturals
| [y] | = | 0 | |
| [z] | = | 0 | |
| [p1] | = | 3 | |
| [p10] | = | 0 | |
| [p2] | = | 3 | |
| [+ (x1, x2) ] | = | 3 x1 + 3 x2 | |
| [+# (x1, x2) ] | = | 2 x1 + x2 | |
| [p5] | = | 3 | |
| [f(x1, ..., xn)] | = | x1 + ... + xn + 1 | for all other symbols f of arity n |
| +#( p2 , +( p1 , x ) ) | → | +#( p1 , +( p2 , x ) ) |
| +#( p5 , +( p1 , x ) ) | → | +#( p1 , +( p5 , x ) ) |
| +#( p5 , +( p2 , x ) ) | → | +#( p2 , +( p5 , x ) ) |
The dependency pairs are split into 0 component(s).