We consider the TRS containing the following rules:
| if(true,a,x) | → | a | (1) |
| if(true,b,x) | → | b | (2) |
| if(true,g(a),x) | → | g(a) | (3) |
| if(true,g(b),x) | → | g(b) | (4) |
| if(false,x,a) | → | a | (5) |
| if(false,x,b) | → | b | (6) |
| if(false,x,g(a)) | → | g(a) | (7) |
| if(false,x,g(b)) | → | g(b) | (8) |
| g(a) | → | g(g(a)) | (9) |
| g(b) | → | a | (10) |
| f(a,b) | → | b | (11) |
| f(g(g(a)),x) | → | b | (12) |
The underlying signature is as follows:
{if/3, true/0, a/0, b/0, g/1, false/0, f/2}| t0 | = | if(true,g(a),f7) |
| → | if(true,g(g(a)),f7) | |
| = | t1 |
| t0 | = | if(true,g(a),f7) |
| → | g(a) | |
| = | t1 |
Automaton 1
final states:
{26}
transitions:
| f7 | → | 27 |
| g(28) | → | 29 |
| g(29) | → | 30 |
| g(29) | → | 29 |
| if(31,30,27) | → | 26 |
| a | → | 28 |
| true | → | 31 |
Automaton 2
final states:
{24}
transitions:
| g(24) | → | 24 |
| g(25) | → | 24 |
| a | → | 25 |