We consider the TRS containing the following rules:
a | → | f(h(c,h(h(h(h(f(h(a,b)),a),h(h(h(f(f(a)),c),h(f(b),a)),a)),b),c))) | (1) |
h(f(f(b)),h(c,h(f(f(h(h(b,h(c,c)),h(f(a),c)))),f(a)))) | → | h(b,b) | (2) |
f(c) | → | c | (3) |
f(f(h(f(h(c,h(a,f(a)))),f(c)))) | → | b | (4) |
The underlying signature is as follows:
{a/0, f/1, h/2, c/0, b/0}t0 | = | f(f(h(f(h(c,h(a,f(a)))),f(c)))) |
→ | f(f(h(f(h(c,h(a,f(f(h(c,h(h(h(h(f(h(a,b)),a),h(h(h(f(f(a)),c),h(f(b),a)),a)),b),c))))))),f(c)))) | |
→ | f(f(h(f(h(c,h(a,f(f(h(c,h(h(h(h(f(h(a,b)),a),h(h(h(f(f(a)),c),h(f(b),a)),a)),b),c))))))),c))) | |
= | t2 |
t0 | = | f(f(h(f(h(c,h(a,f(a)))),f(c)))) |
→ | b | |
= | t1 |
π(a) | = | [] |
π(b) | = | [] |
π(c) | = | [] |
π(f) | = | 1 |
π(h) | = | [1,2] |