We consider the TRS containing the following rules:
xor(x,0) | → | x | (1) |
xor(0,x) | → | x | (2) |
xor(x,x) | → | 0 | (3) |
and(x,0) | → | 0 | (4) |
and(0,x) | → | 0 | (5) |
and(x,1) | → | x | (6) |
and(1,x) | → | x | (7) |
and(x,x) | → | x | (8) |
xor(xor(x,y),z) | → | xor(x,xor(y,z)) | (9) |
xor(x,xor(y,z)) | → | xor(y,xor(x,z)) | (10) |
xor(x,y) | → | xor(y,x) | (11) |
xor(x,xor(x,y)) | → | y | (12) |
and(and(x,y),z) | → | and(x,and(y,z)) | (13) |
and(x,and(y,z)) | → | and(y,and(x,z)) | (14) |
and(x,y) | → | and(y,x) | (15) |
and(x,and(x,y)) | → | and(x,y) | (16) |
and(x,xor(y,z)) | → | xor(and(x,y),xor(x,z)) | (17) |
and(xor(x,y),z) | → | xor(and(x,z),and(y,z)) | (18) |
The underlying signature is as follows:
{xor/2, 0/0, and/2, 1/0}t0 | = | and(0,xor(c_1,c_2)) |
→ | xor(and(0,c_1),xor(0,c_2)) | |
→ | xor(0,xor(0,c_2)) | |
→ | c_2 | |
= | t3 |
t0 | = | and(0,xor(c_1,c_2)) |
→ | 0 | |
= | t1 |
π(0) | = | [] |
π(c_2) | = | [] |