The rewrite relation of the following (conditional) TRS is considered.
add(0,x) | → | x | | |
add(s(x),y) | → | s(add(x,y)) | | |
mult(0,y) | → | 0 | | |
mult(s(x),y) | → | add(mult(x,y),y) | | |
lte(0,y) | → | true | | |
lte(s(x),0) | → | false | | |
lte(s(x),s(y)) | → | lte(x,y) | | |
minus(0,s(y)) | → | 0 | | |
minus(x,0) | → | x | | |
minus(s(x),s(y)) | → | minus(x,y) | | |
mod(0,y) | → | 0 | | |
mod(x,0) | → | x | | |
mod(x,s(y)) | → | mod(minus(x,s(y)),s(y)) | | lte(s(y),x) ≈ true |
mod(x,s(y)) | → | x | | lte(s(y),x) ≈ false |
div(0,s(x)) | → | 0 | | |
div(s(x),s(y)) | → | 0 | | lte(s(x),y) ≈ true |
div(s(x),s(y)) | → | s(q) | | lte(s(x),y) ≈ false, div(minus(x,y),s(y)) ≈ q |
power(x,0) | → | s(0) | | |
power(x,n) | → | mult(mult(y,y),s(0)) | | n ≈ s(n'), mod(n,s(s(0))) ≈ 0, power(x,div(n,s(s(0)))) ≈ y |
power(x,n) | → | mult(mult(y,y),x) | | n ≈ s(n'), mod(n,s(s(0))) ≈ s(z), power(x,div(n,s(s(0)))) ≈ y |
add(0,x) | → | x | | |
add(s(x),y) | → | s(add(x,y)) | | |
mult(0,y) | → | 0 | | |
mult(s(x),y) | → | add(mult(x,y),y) | | |
lte(0,y) | → | true | | |
lte(s(x),0) | → | false | | |
lte(s(x),s(y)) | → | lte(x,y) | | |
minus(0,s(y)) | → | 0 | | |
minus(x,0) | → | x | | |
minus(s(x),s(y)) | → | minus(x,y) | | |
mod(0,y) | → | 0 | | |
mod(x,0) | → | x | | |
mod(x,s(y)) | → | mod(minus(x,s(y)),s(y)) | | lte(s(y),x) ≈ true |
mod(x,s(y)) | → | x | | lte(s(y),x) ≈ false |
div(0,s(x)) | → | 0 | | |
div(s(x),s(y)) | → | 0 | | lte(s(x),y) ≈ true |
div(s(x),s(y)) | → | s(div(minus(x,y),s(y))) | | lte(s(x),y) ≈ false |
power(x,0) | → | s(0) | | |
power(x,n) | → | mult(mult(power(x,div(n,s(s(0)))),power(x,div(n,s(s(0))))),s(0)) | | n ≈ s(n'), mod(n,s(s(0))) ≈ 0 |
power(x,n) | → | mult(mult(power(x,div(n,s(s(0)))),power(x,div(n,s(s(0))))),x) | | n ≈ s(n'), mod(n,s(s(0))) ≈ s(z) |
div(s(x),s(y)) | → | s(q) | | lte(s(x),y) ≈ false, div(minus(x,y),s(y)) ≈ q |
power(x,n) | → | mult(mult(y,y),s(0)) | | n ≈ s(n'), mod(n,s(s(0))) ≈ 0, power(x,div(n,s(s(0)))) ≈ y |
power(x,n) | → | mult(mult(y,y),x) | | n ≈ s(n'), mod(n,s(s(0))) ≈ s(z), power(x,div(n,s(s(0)))) ≈ y |
We collect the conditions in the fresh compound-symbol |.