We consider the TRS containing the following rules:
sq(0(x)) | → | p(s(p(s(p(p(p(p(s(s(s(s(0(p(s(p(s(x))))))))))))))))) | (1) |
sq(s(x)) | → | s(p(s(p(s(p(p(s(s(twice(p(s(p(s(p(p(p(s(s(s(sq(p(p(p(p(p(p(s(s(s(s(s(s(x))))))))))))))))))))))))))))))))) | (2) |
twice(0(x)) | → | p(p(p(p(s(s(p(s(s(s(0(p(p(p(s(s(s(p(p(s(s(p(s(p(s(p(s(x))))))))))))))))))))))))))) | (3) |
twice(s(x)) | → | p(p(s(s(s(p(p(s(s(s(twice(p(s(p(s(x))))))))))))))) | (4) |
p(p(s(x))) | → | p(x) | (5) |
p(s(x)) | → | x | (6) |
p(0(x)) | → | 0(s(s(s(s(s(s(s(s(s(s(s(x)))))))))))) | (7) |
0(x) | → | x | (8) |
The underlying signature is as follows:
{sq/1, 0/1, p/1, s/1, twice/1}t0 | = | p(0(x)) |
→ | p(x) | |
= | t1 |
t0 | = | p(0(x)) |
→ | 0(s(s(s(s(s(s(s(s(s(s(s(x)))))))))))) | |
→ | s(s(s(s(s(s(s(s(s(s(s(x))))))))))) | |
= | t2 |