We consider the TRS containing the following rules:
s(p(x)) | → | x | (1) |
p(s(x)) | → | x | (2) |
+(x,0) | → | x | (3) |
+(x,s(y)) | → | s(+(x,y)) | (4) |
+(x,p(y)) | → | p(+(x,y)) | (5) |
-(x,0) | → | x | (6) |
-(x,s(y)) | → | p(-(x,y)) | (7) |
-(x,p(y)) | → | s(-(x,y)) | (8) |
*(x,0) | → | 0 | (9) |
*(x,s(y)) | → | +(*(x,y),x) | (10) |
*(x,p(y)) | → | -(*(x,y),x) | (11) |
The underlying signature is as follows:
{s/1, p/1, +/2, 0/0, -/2, */2}t0 | = | *(f7,s(p(f10))) |
→ | *(f7,f10) | |
= | t1 |
t0 | = | *(f7,s(p(f10))) |
→ | +(*(f7,p(f10)),f7) | |
= | t1 |
Automaton 1
final states:
{28}
transitions:
f7 | → | 30 |
*(30,29) | → | 28 |
f10 | → | 29 |
Automaton 2
final states:
{31}
transitions:
f7 | → | 32 |
f7 | → | 35 |
*(35,34) | → | 36 |
*(35,33) | → | 95 |
f10 | → | 33 |
-(95,35) | → | 36 |
p(33) | → | 34 |
+(36,32) | → | 31 |