We consider the TRS containing the following rules:
| s(p(x)) | → | x | (1) |
| p(s(x)) | → | x | (2) |
| +(x,0) | → | x | (3) |
| +(x,s(y)) | → | s(+(x,y)) | (4) |
| +(x,p(y)) | → | p(+(x,y)) | (5) |
| -(x,0) | → | x | (6) |
| -(x,s(y)) | → | p(-(x,y)) | (7) |
| -(x,p(y)) | → | s(-(x,y)) | (8) |
| *(x,0) | → | 0 | (9) |
| *(x,s(y)) | → | +(*(x,y),x) | (10) |
| *(x,p(y)) | → | -(*(x,y),x) | (11) |
The underlying signature is as follows:
{s/1, p/1, +/2, 0/0, -/2, */2}| t0 | = | *(f7,s(p(f10))) |
| → | *(f7,f10) | |
| = | t1 |
| t0 | = | *(f7,s(p(f10))) |
| → | +(*(f7,p(f10)),f7) | |
| = | t1 |
Automaton 1
final states:
{28}
transitions:
| f7 | → | 30 |
| *(30,29) | → | 28 |
| f10 | → | 29 |
Automaton 2
final states:
{31}
transitions:
| f7 | → | 32 |
| f7 | → | 35 |
| *(35,34) | → | 36 |
| *(35,33) | → | 95 |
| f10 | → | 33 |
| -(95,35) | → | 36 |
| p(33) | → | 34 |
| +(36,32) | → | 31 |