The rewrite relation of the following TRS is considered.
| pred(s(x)) | → | x | (1) |
| minus(x,0) | → | x | (2) |
| minus(x,s(y)) | → | pred(minus(x,y)) | (3) |
| quot(0,s(y)) | → | 0 | (4) |
| quot(s(x),s(y)) | → | s(quot(minus(x,y),s(y))) | (5) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| pred#(s(z0)) |
| minus#(z0,0) |
| minus#(z0,s(z1)) |
| quot#(0,s(z0)) |
| quot#(s(z0),s(z1)) |
| quot(0,s(z0)) | → | 0 | (12) |
| quot(s(z0),s(z1)) | → | s(quot(minus(z0,z1),s(z1))) | (14) |
| quot#(0,s(z0)) | → | c3 | (13) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [minus(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [pred(x1)] | = | 1 + 1 · x1 |
| [pred#(x1)] | = | 0 |
| [minus#(x1, x2)] | = | 0 |
| [quot#(x1, x2)] | = | 1 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| pred#(s(z0)) | → | c | (7) |
| minus#(z0,0) | → | c1 | (9) |
| minus#(z0,s(z1)) | → | c2(pred#(minus(z0,z1)),minus#(z0,z1)) | (11) |
| quot#(0,s(z0)) | → | c3 | (13) |
| quot#(s(z0),s(z1)) | → | c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (15) |
| quot#(s(z0),s(z1)) | → | c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (15) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [pred(x1)] | = | 1 · x1 + 0 |
| [pred#(x1)] | = | 0 |
| [minus#(x1, x2)] | = | 0 |
| [quot#(x1, x2)] | = | 1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| pred#(s(z0)) | → | c | (7) |
| minus#(z0,0) | → | c1 | (9) |
| minus#(z0,s(z1)) | → | c2(pred#(minus(z0,z1)),minus#(z0,z1)) | (11) |
| quot#(0,s(z0)) | → | c3 | (13) |
| quot#(s(z0),s(z1)) | → | c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (15) |
| minus(z0,s(z1)) | → | pred(minus(z0,z1)) | (10) |
| minus(z0,0) | → | z0 | (8) |
| pred(s(z0)) | → | z0 | (6) |
| minus#(z0,0) | → | c1 | (9) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [pred(x1)] | = | 1 · x1 + 0 |
| [pred#(x1)] | = | 0 |
| [minus#(x1, x2)] | = | 1 |
| [quot#(x1, x2)] | = | 1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| pred#(s(z0)) | → | c | (7) |
| minus#(z0,0) | → | c1 | (9) |
| minus#(z0,s(z1)) | → | c2(pred#(minus(z0,z1)),minus#(z0,z1)) | (11) |
| quot#(0,s(z0)) | → | c3 | (13) |
| quot#(s(z0),s(z1)) | → | c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (15) |
| minus(z0,s(z1)) | → | pred(minus(z0,z1)) | (10) |
| minus(z0,0) | → | z0 | (8) |
| pred(s(z0)) | → | z0 | (6) |
| minus#(z0,s(z1)) | → | c2(pred#(minus(z0,z1)),minus#(z0,z1)) | (11) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [pred(x1)] | = | 1 · x1 + 0 |
| [pred#(x1)] | = | 0 |
| [minus#(x1, x2)] | = | 1 · x2 + 0 |
| [quot#(x1, x2)] | = | 1 · x1 · x2 + 0 |
| [0] | = | 2 |
| [s(x1)] | = | 1 + 1 · x1 |
| pred#(s(z0)) | → | c | (7) |
| minus#(z0,0) | → | c1 | (9) |
| minus#(z0,s(z1)) | → | c2(pred#(minus(z0,z1)),minus#(z0,z1)) | (11) |
| quot#(0,s(z0)) | → | c3 | (13) |
| quot#(s(z0),s(z1)) | → | c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (15) |
| minus(z0,s(z1)) | → | pred(minus(z0,z1)) | (10) |
| minus(z0,0) | → | z0 | (8) |
| pred(s(z0)) | → | z0 | (6) |
| pred#(s(z0)) | → | c | (7) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c3] | = | 0 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [minus(x1, x2)] | = | 1 · x1 + 0 |
| [pred(x1)] | = | 1 · x1 + 0 |
| [pred#(x1)] | = | 1 |
| [minus#(x1, x2)] | = | 1 · x2 + 0 |
| [quot#(x1, x2)] | = | 2 · x1 · x2 + 0 |
| [0] | = | 2 |
| [s(x1)] | = | 2 + 1 · x1 |
| pred#(s(z0)) | → | c | (7) |
| minus#(z0,0) | → | c1 | (9) |
| minus#(z0,s(z1)) | → | c2(pred#(minus(z0,z1)),minus#(z0,z1)) | (11) |
| quot#(0,s(z0)) | → | c3 | (13) |
| quot#(s(z0),s(z1)) | → | c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) | (15) |
| minus(z0,s(z1)) | → | pred(minus(z0,z1)) | (10) |
| minus(z0,0) | → | z0 | (8) |
| pred(s(z0)) | → | z0 | (6) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).