The rewrite relation of the following TRS is considered.
f(x,c(y)) | → | f(x,s(f(y,y))) | (1) |
f(s(x),y) | → | f(x,s(c(y))) | (2) |
|
originates from |
|
||||||||
|
originates from |
|
f#(z0,c(z1)) |
f#(s(z0),z1) |
f#(z0,c(z1)) | → | c1(f#(z0,s(f(z1,z1))),f#(z1,z1)) | (4) |
[c1(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c2(x1)] | = | 1 · x1 + 0 |
[f(x1, x2)] | = | 1 + 1 · x2 |
[f#(x1, x2)] | = | 1 · x2 + 0 |
[c(x1)] | = | 1 + 1 · x1 |
[s(x1)] | = | 0 |
f#(z0,c(z1)) | → | c1(f#(z0,s(f(z1,z1))),f#(z1,z1)) | (4) |
f#(s(z0),z1) | → | c2(f#(z0,s(c(z1)))) | (6) |
f#(s(z0),z1) | → | c2(f#(z0,s(c(z1)))) | (6) |
[c1(x1, x2)] | = |
|
|||||||||||||||||||||
[f#(x1, x2)] | = |
|
|||||||||||||||||||||
[c2(x1)] | = |
|
|||||||||||||||||||||
[s(x1)] | = |
|
|||||||||||||||||||||
[c(x1)] | = |
|
|||||||||||||||||||||
[f(x1, x2)] | = |
|
f#(z0,c(z1)) | → | c1(f#(z0,s(f(z1,z1))),f#(z1,z1)) | (4) |
f#(s(z0),z1) | → | c2(f#(z0,s(c(z1)))) | (6) |
f(z0,c(z1)) | → | f(z0,s(f(z1,z1))) | (3) |
f(s(z0),z1) | → | f(z0,s(c(z1))) | (5) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).