The rewrite relation of the following TRS is considered.
| g(x,y) | → | x | (1) |
| g(x,y) | → | y | (2) |
| f(0,1,x) | → | f(s(x),x,x) | (3) |
| f(x,y,s(z)) | → | s(f(0,1,z)) | (4) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| g#(z0,z1) |
| g#(z0,z1) |
| f#(0,1,z0) |
| f#(z0,z1,s(z2)) |
| g(z0,z1) | → | z0 | (5) |
| g(z0,z1) | → | z1 | (7) |
| f(0,1,z0) | → | f(s(z0),z0,z0) | (9) |
| f(z0,z1,s(z2)) | → | s(f(0,1,z2)) | (11) |
| g#(z0,z1) | → | c | (6) |
| g#(z0,z1) | → | c1 | (8) |
| f#(z0,z1,s(z2)) | → | c3(f#(0,1,z2)) | (12) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3(x1)] | = | 1 · x1 + 0 |
| [g#(x1, x2)] | = | 1 |
| [f#(x1, x2, x3)] | = | 1 · x3 + 0 |
| [0] | = | 1 |
| [1] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| g#(z0,z1) | → | c | (6) |
| g#(z0,z1) | → | c1 | (8) |
| f#(0,1,z0) | → | c2(f#(s(z0),z0,z0)) | (10) |
| f#(z0,z1,s(z2)) | → | c3(f#(0,1,z2)) | (12) |
| f#(0,1,z0) | → | c2(f#(s(z0),z0,z0)) | (10) |
| [c] | = |
|
||||||||||||||||||||||||||||
| [g#(x1, x2)] | = |
|
||||||||||||||||||||||||||||
| [c1] | = |
|
||||||||||||||||||||||||||||
| [c3(x1)] | = |
|
||||||||||||||||||||||||||||
| [f#(x1, x2, x3)] | = |
|
||||||||||||||||||||||||||||
| [c2(x1)] | = |
|
||||||||||||||||||||||||||||
| [s(x1)] | = |
|
||||||||||||||||||||||||||||
| [0] | = |
|
||||||||||||||||||||||||||||
| [1] | = |
|
| g#(z0,z1) | → | c | (6) |
| g#(z0,z1) | → | c1 | (8) |
| f#(0,1,z0) | → | c2(f#(s(z0),z0,z0)) | (10) |
| f#(z0,z1,s(z2)) | → | c3(f#(0,1,z2)) | (12) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).