The rewrite relation of the following TRS is considered.
|
originates from |
|
|
originates from |
|
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
|
originates from |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
|
|
originates from |
|
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
|
originates from |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
|
|
originates from |
|
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
|
originates from |
log(s(s(z0))) |
→ |
s(log(s(quot(z0,s(s(0)))))) |
(19) |
|
Moreover, we add the following terms to the innermost strategy.
pred#(s(z0)) |
→ |
c |
(9) |
minus#(z0,0) |
→ |
c1 |
(11) |
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
quot#(0,s(z0)) |
→ |
c3 |
(15) |
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
log#(s(0)) |
→ |
c5 |
(18) |
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
minus(z0,0) |
→ |
z0 |
(10) |
quot(0,s(z0)) |
→ |
0 |
(14) |
pred(s(z0)) |
→ |
z0 |
(8) |
pred#(s(z0)) |
→ |
c |
(9) |
minus#(z0,0) |
→ |
c1 |
(11) |
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
quot#(0,s(z0)) |
→ |
c3 |
(15) |
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
log#(s(0)) |
→ |
c5 |
(18) |
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
minus(z0,0) |
→ |
z0 |
(10) |
quot(0,s(z0)) |
→ |
0 |
(14) |
pred(s(z0)) |
→ |
z0 |
(8) |
pred#(s(z0)) |
→ |
c |
(9) |
minus#(z0,0) |
→ |
c1 |
(11) |
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
quot#(0,s(z0)) |
→ |
c3 |
(15) |
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
log#(s(0)) |
→ |
c5 |
(18) |
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
minus(z0,0) |
→ |
z0 |
(10) |
quot(0,s(z0)) |
→ |
0 |
(14) |
pred(s(z0)) |
→ |
z0 |
(8) |
pred#(s(z0)) |
→ |
c |
(9) |
minus#(z0,0) |
→ |
c1 |
(11) |
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
quot#(0,s(z0)) |
→ |
c3 |
(15) |
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
log#(s(0)) |
→ |
c5 |
(18) |
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
minus(z0,0) |
→ |
z0 |
(10) |
quot(0,s(z0)) |
→ |
0 |
(14) |
pred(s(z0)) |
→ |
z0 |
(8) |
pred#(s(z0)) |
→ |
c |
(9) |
minus#(z0,0) |
→ |
c1 |
(11) |
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
quot#(0,s(z0)) |
→ |
c3 |
(15) |
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
log#(s(0)) |
→ |
c5 |
(18) |
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
minus(z0,0) |
→ |
z0 |
(10) |
quot(0,s(z0)) |
→ |
0 |
(14) |
pred(s(z0)) |
→ |
z0 |
(8) |
pred#(s(z0)) |
→ |
c |
(9) |
minus#(z0,0) |
→ |
c1 |
(11) |
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
quot#(0,s(z0)) |
→ |
c3 |
(15) |
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
log#(s(0)) |
→ |
c5 |
(18) |
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
minus(z0,0) |
→ |
z0 |
(10) |
quot(0,s(z0)) |
→ |
0 |
(14) |
pred(s(z0)) |
→ |
z0 |
(8) |
pred#(s(z0)) |
→ |
c |
(9) |
minus#(z0,0) |
→ |
c1 |
(11) |
minus#(z0,s(z1)) |
→ |
c2(pred#(minus(z0,z1)),minus#(z0,z1)) |
(13) |
quot#(0,s(z0)) |
→ |
c3 |
(15) |
quot#(s(z0),s(z1)) |
→ |
c4(quot#(minus(z0,z1),s(z1)),minus#(z0,z1)) |
(17) |
log#(s(0)) |
→ |
c5 |
(18) |
log#(s(s(z0))) |
→ |
c6(log#(s(quot(z0,s(s(0))))),quot#(z0,s(s(0)))) |
(20) |
quot(s(z0),s(z1)) |
→ |
s(quot(minus(z0,z1),s(z1))) |
(16) |
minus(z0,s(z1)) |
→ |
pred(minus(z0,z1)) |
(12) |
minus(z0,0) |
→ |
z0 |
(10) |
quot(0,s(z0)) |
→ |
0 |
(14) |
pred(s(z0)) |
→ |
z0 |
(8) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).