The rewrite relation of the following TRS is considered.
| D(t) | → | 1 | (1) |
| D(constant) | → | 0 | (2) |
| D(+(x,y)) | → | +(D(x),D(y)) | (3) |
| D(*(x,y)) | → | +(*(y,D(x)),*(x,D(y))) | (4) |
| D(-(x,y)) | → | -(D(x),D(y)) | (5) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| D#(t) |
| D#(constant) |
| D#(+(z0,z1)) |
| D#(*(z0,z1)) |
| D#(-(z0,z1)) |
| D(t) | → | 1 | (1) |
| D(constant) | → | 0 | (2) |
| D(+(z0,z1)) | → | +(D(z0),D(z1)) | (8) |
| D(*(z0,z1)) | → | +(*(z1,D(z0)),*(z0,D(z1))) | (10) |
| D(-(z0,z1)) | → | -(D(z0),D(z1)) | (12) |
| D#(+(z0,z1)) | → | c2(D#(z0),D#(z1)) | (9) |
| D#(*(z0,z1)) | → | c3(D#(z0),D#(z1)) | (11) |
| D#(-(z0,z1)) | → | c4(D#(z0),D#(z1)) | (13) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [D#(x1)] | = | 1 · x1 + 0 |
| [t] | = | 0 |
| [constant] | = | 0 |
| [+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [-(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| D#(t) | → | c | (6) |
| D#(constant) | → | c1 | (7) |
| D#(+(z0,z1)) | → | c2(D#(z0),D#(z1)) | (9) |
| D#(*(z0,z1)) | → | c3(D#(z0),D#(z1)) | (11) |
| D#(-(z0,z1)) | → | c4(D#(z0),D#(z1)) | (13) |
| D#(t) | → | c | (6) |
| D#(constant) | → | c1 | (7) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c3(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c4(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [D#(x1)] | = | 3 + 3 · x1 |
| [t] | = | 1 |
| [constant] | = | 1 |
| [+(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
| [*(x1, x2)] | = | 3 + 1 · x1 + 1 · x2 |
| [-(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
| D#(t) | → | c | (6) |
| D#(constant) | → | c1 | (7) |
| D#(+(z0,z1)) | → | c2(D#(z0),D#(z1)) | (9) |
| D#(*(z0,z1)) | → | c3(D#(z0),D#(z1)) | (11) |
| D#(-(z0,z1)) | → | c4(D#(z0),D#(z1)) | (13) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).