The rewrite relation of the following TRS is considered.
sort(nil) | → | nil | (1) |
sort(cons(x,y)) | → | insert(x,sort(y)) | (2) |
insert(x,nil) | → | cons(x,nil) | (3) |
insert(x,cons(v,w)) | → | choose(x,cons(v,w),x,v) | (4) |
choose(x,cons(v,w),y,0) | → | cons(x,cons(v,w)) | (5) |
choose(x,cons(v,w),0,s(z)) | → | cons(v,insert(x,w)) | (6) |
choose(x,cons(v,w),s(y),s(z)) | → | choose(x,cons(v,w),y,z) | (7) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
sort#(nil) |
sort#(cons(z0,z1)) |
insert#(z0,nil) |
insert#(z0,cons(z1,z2)) |
choose#(z0,cons(z1,z2),z3,0) |
choose#(z0,cons(z1,z2),0,s(z3)) |
choose#(z0,cons(z1,z2),s(z3),s(z4)) |
sort#(nil) | → | c | (8) |
insert#(z0,nil) | → | c2 | (12) |
choose#(z0,cons(z1,z2),z3,0) | → | c4 | (16) |
[c] | = | 0 |
[c1(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c2] | = | 0 |
[c3(x1)] | = | 1 · x1 + 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[sort(x1)] | = | 1 + 1 · x1 |
[insert(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[choose(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 |
[sort#(x1)] | = | 1 · x1 + 0 |
[insert#(x1, x2)] | = | 1 + 1 · x1 |
[choose#(x1,...,x4)] | = | 1 + 1 · x1 |
[nil] | = | 1 |
[cons(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[0] | = | 1 |
[s(x1)] | = | 1 + 1 · x1 |
sort#(nil) | → | c | (8) |
sort#(cons(z0,z1)) | → | c1(insert#(z0,sort(z1)),sort#(z1)) | (10) |
insert#(z0,nil) | → | c2 | (12) |
insert#(z0,cons(z1,z2)) | → | c3(choose#(z0,cons(z1,z2),z0,z1)) | (14) |
choose#(z0,cons(z1,z2),z3,0) | → | c4 | (16) |
choose#(z0,cons(z1,z2),0,s(z3)) | → | c5(insert#(z0,z2)) | (18) |
choose#(z0,cons(z1,z2),s(z3),s(z4)) | → | c6(choose#(z0,cons(z1,z2),z3,z4)) | (20) |
sort#(cons(z0,z1)) | → | c1(insert#(z0,sort(z1)),sort#(z1)) | (10) |
[c] | = | 0 |
[c1(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c2] | = | 0 |
[c3(x1)] | = | 1 · x1 + 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[sort(x1)] | = | 1 + 1 · x1 |
[insert(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[choose(x1,...,x4)] | = | 1 + 1 · x1 + 1 · x2 |
[sort#(x1)] | = | 1 · x1 + 0 |
[insert#(x1, x2)] | = | 1 · x1 + 0 |
[choose#(x1,...,x4)] | = | 1 · x1 + 0 |
[nil] | = | 1 |
[cons(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
[0] | = | 1 |
[s(x1)] | = | 1 + 1 · x1 |
sort#(nil) | → | c | (8) |
sort#(cons(z0,z1)) | → | c1(insert#(z0,sort(z1)),sort#(z1)) | (10) |
insert#(z0,nil) | → | c2 | (12) |
insert#(z0,cons(z1,z2)) | → | c3(choose#(z0,cons(z1,z2),z0,z1)) | (14) |
choose#(z0,cons(z1,z2),z3,0) | → | c4 | (16) |
choose#(z0,cons(z1,z2),0,s(z3)) | → | c5(insert#(z0,z2)) | (18) |
choose#(z0,cons(z1,z2),s(z3),s(z4)) | → | c6(choose#(z0,cons(z1,z2),z3,z4)) | (20) |
choose#(z0,cons(z1,z2),0,s(z3)) | → | c5(insert#(z0,z2)) | (18) |
[c] | = | 0 |
[c1(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c2] | = | 0 |
[c3(x1)] | = | 1 · x1 + 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[sort(x1)] | = | 1 · x1 + 0 |
[insert(x1, x2)] | = | 1 + 1 · x2 |
[choose(x1,...,x4)] | = | 1 + 1 · x2 |
[sort#(x1)] | = | 2 · x1 · x1 + 0 |
[insert#(x1, x2)] | = | 2 · x2 + 0 |
[choose#(x1,...,x4)] | = | 2 · x2 + 0 |
[nil] | = | 0 |
[cons(x1, x2)] | = | 1 + 1 · x2 |
[0] | = | 0 |
[s(x1)] | = | 0 |
sort#(nil) | → | c | (8) |
sort#(cons(z0,z1)) | → | c1(insert#(z0,sort(z1)),sort#(z1)) | (10) |
insert#(z0,nil) | → | c2 | (12) |
insert#(z0,cons(z1,z2)) | → | c3(choose#(z0,cons(z1,z2),z0,z1)) | (14) |
choose#(z0,cons(z1,z2),z3,0) | → | c4 | (16) |
choose#(z0,cons(z1,z2),0,s(z3)) | → | c5(insert#(z0,z2)) | (18) |
choose#(z0,cons(z1,z2),s(z3),s(z4)) | → | c6(choose#(z0,cons(z1,z2),z3,z4)) | (20) |
choose(z0,cons(z1,z2),0,s(z3)) | → | cons(z1,insert(z0,z2)) | (17) |
sort(nil) | → | nil | (1) |
insert(z0,cons(z1,z2)) | → | choose(z0,cons(z1,z2),z0,z1) | (13) |
sort(cons(z0,z1)) | → | insert(z0,sort(z1)) | (9) |
insert(z0,nil) | → | cons(z0,nil) | (11) |
choose(z0,cons(z1,z2),z3,0) | → | cons(z0,cons(z1,z2)) | (15) |
choose(z0,cons(z1,z2),s(z3),s(z4)) | → | choose(z0,cons(z1,z2),z3,z4) | (19) |
insert#(z0,cons(z1,z2)) | → | c3(choose#(z0,cons(z1,z2),z0,z1)) | (14) |
[c] | = | 0 |
[c1(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c2] | = | 0 |
[c3(x1)] | = | 1 · x1 + 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[sort(x1)] | = | 1 · x1 + 0 |
[insert(x1, x2)] | = | 2 + 1 · x2 |
[choose(x1,...,x4)] | = | 2 + 1 · x2 |
[sort#(x1)] | = | 2 · x1 · x1 + 0 |
[insert#(x1, x2)] | = | 1 + 1 · x2 |
[choose#(x1,...,x4)] | = | 1 · x2 + 0 |
[nil] | = | 0 |
[cons(x1, x2)] | = | 2 + 1 · x2 |
[0] | = | 0 |
[s(x1)] | = | 0 |
sort#(nil) | → | c | (8) |
sort#(cons(z0,z1)) | → | c1(insert#(z0,sort(z1)),sort#(z1)) | (10) |
insert#(z0,nil) | → | c2 | (12) |
insert#(z0,cons(z1,z2)) | → | c3(choose#(z0,cons(z1,z2),z0,z1)) | (14) |
choose#(z0,cons(z1,z2),z3,0) | → | c4 | (16) |
choose#(z0,cons(z1,z2),0,s(z3)) | → | c5(insert#(z0,z2)) | (18) |
choose#(z0,cons(z1,z2),s(z3),s(z4)) | → | c6(choose#(z0,cons(z1,z2),z3,z4)) | (20) |
choose(z0,cons(z1,z2),0,s(z3)) | → | cons(z1,insert(z0,z2)) | (17) |
sort(nil) | → | nil | (1) |
insert(z0,cons(z1,z2)) | → | choose(z0,cons(z1,z2),z0,z1) | (13) |
sort(cons(z0,z1)) | → | insert(z0,sort(z1)) | (9) |
insert(z0,nil) | → | cons(z0,nil) | (11) |
choose(z0,cons(z1,z2),z3,0) | → | cons(z0,cons(z1,z2)) | (15) |
choose(z0,cons(z1,z2),s(z3),s(z4)) | → | choose(z0,cons(z1,z2),z3,z4) | (19) |
choose#(z0,cons(z1,z2),s(z3),s(z4)) | → | c6(choose#(z0,cons(z1,z2),z3,z4)) | (20) |
[c] | = | 0 |
[c1(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
[c2] | = | 0 |
[c3(x1)] | = | 1 · x1 + 0 |
[c4] | = | 0 |
[c5(x1)] | = | 1 · x1 + 0 |
[c6(x1)] | = | 1 · x1 + 0 |
[sort(x1)] | = | 2 + 1 · x1 |
[insert(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
[choose(x1,...,x4)] | = | 2 + 1 · x1 + 1 · x2 |
[sort#(x1)] | = | 2 · x1 · x1 + 0 |
[insert#(x1, x2)] | = | 2 · x1 + 0 + 1 · x1 · x2 |
[choose#(x1,...,x4)] | = | 2 · x3 + 0 + 1 · x2 · x1 |
[nil] | = | 0 |
[cons(x1, x2)] | = | 2 + 1 · x1 + 1 · x2 |
[0] | = | 0 |
[s(x1)] | = | 2 + 1 · x1 |
sort#(nil) | → | c | (8) |
sort#(cons(z0,z1)) | → | c1(insert#(z0,sort(z1)),sort#(z1)) | (10) |
insert#(z0,nil) | → | c2 | (12) |
insert#(z0,cons(z1,z2)) | → | c3(choose#(z0,cons(z1,z2),z0,z1)) | (14) |
choose#(z0,cons(z1,z2),z3,0) | → | c4 | (16) |
choose#(z0,cons(z1,z2),0,s(z3)) | → | c5(insert#(z0,z2)) | (18) |
choose#(z0,cons(z1,z2),s(z3),s(z4)) | → | c6(choose#(z0,cons(z1,z2),z3,z4)) | (20) |
choose(z0,cons(z1,z2),0,s(z3)) | → | cons(z1,insert(z0,z2)) | (17) |
sort(nil) | → | nil | (1) |
insert(z0,cons(z1,z2)) | → | choose(z0,cons(z1,z2),z0,z1) | (13) |
sort(cons(z0,z1)) | → | insert(z0,sort(z1)) | (9) |
insert(z0,nil) | → | cons(z0,nil) | (11) |
choose(z0,cons(z1,z2),z3,0) | → | cons(z0,cons(z1,z2)) | (15) |
choose(z0,cons(z1,z2),s(z3),s(z4)) | → | choose(z0,cons(z1,z2),z3,z4) | (19) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).