The rewrite relation of the following TRS is considered.
| +(0,y) | → | y | (1) |
| +(s(x),y) | → | s(+(x,y)) | (2) |
| +(p(x),y) | → | p(+(x,y)) | (3) |
| minus(0) | → | 0 | (4) |
| minus(s(x)) | → | p(minus(x)) | (5) |
| minus(p(x)) | → | s(minus(x)) | (6) |
| *(0,y) | → | 0 | (7) |
| *(s(x),y) | → | +(*(x,y),y) | (8) |
| *(p(x),y) | → | +(*(x,y),minus(y)) | (9) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| +#(0,z0) |
| +#(s(z0),z1) |
| +#(p(z0),z1) |
| minus#(0) |
| minus#(s(z0)) |
| minus#(p(z0)) |
| *#(0,z0) |
| *#(s(z0),z1) |
| *#(p(z0),z1) |
| minus#(0) | → | c3 | (16) |
| *#(0,z0) | → | c6 | (22) |
| *#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5(x1)] | = | 1 · x1 + 0 |
| [c6] | = | 0 |
| [c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [minus(x1)] | = | 1 + 1 · x1 |
| [*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [+#(x1, x2)] | = | 0 |
| [minus#(x1)] | = | 1 |
| [*#(x1, x2)] | = | 1 + 1 · x1 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [p(x1)] | = | 1 + 1 · x1 |
| +#(0,z0) | → | c | (11) |
| +#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
| +#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
| minus#(0) | → | c3 | (16) |
| minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
| minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
| *#(0,z0) | → | c6 | (22) |
| *#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
| *#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
| +#(0,z0) | → | c | (11) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5(x1)] | = | 1 · x1 + 0 |
| [c6] | = | 0 |
| [c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [minus(x1)] | = | 1 + 1 · x1 |
| [*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [+#(x1, x2)] | = | 1 |
| [minus#(x1)] | = | 0 |
| [*#(x1, x2)] | = | 1 · x1 + 0 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [p(x1)] | = | 1 + 1 · x1 |
| +#(0,z0) | → | c | (11) |
| +#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
| +#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
| minus#(0) | → | c3 | (16) |
| minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
| minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
| *#(0,z0) | → | c6 | (22) |
| *#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
| *#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
| *#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5(x1)] | = | 1 · x1 + 0 |
| [c6] | = | 0 |
| [c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [+(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [minus(x1)] | = | 1 + 1 · x1 |
| [*(x1, x2)] | = | 1 + 1 · x1 + 1 · x2 |
| [+#(x1, x2)] | = | 0 |
| [minus#(x1)] | = | 0 |
| [*#(x1, x2)] | = | 1 · x1 + 0 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| [p(x1)] | = | 1 + 1 · x1 |
| +#(0,z0) | → | c | (11) |
| +#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
| +#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
| minus#(0) | → | c3 | (16) |
| minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
| minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
| *#(0,z0) | → | c6 | (22) |
| *#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
| *#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
| minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
| minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5(x1)] | = | 1 · x1 + 0 |
| [c6] | = | 0 |
| [c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [+(x1, x2)] | = | 1 |
| [minus(x1)] | = | 0 |
| [*(x1, x2)] | = | 1 · x2 · x2 + 0 |
| [+#(x1, x2)] | = | 0 |
| [minus#(x1)] | = | 1 · x1 + 0 |
| [*#(x1, x2)] | = | 1 · x1 · x2 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| [p(x1)] | = | 2 + 1 · x1 |
| +#(0,z0) | → | c | (11) |
| +#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
| +#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
| minus#(0) | → | c3 | (16) |
| minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
| minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
| *#(0,z0) | → | c6 | (22) |
| *#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
| *#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
| +#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
| +#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
| [c] | = | 0 |
| [c1(x1)] | = | 1 · x1 + 0 |
| [c2(x1)] | = | 1 · x1 + 0 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5(x1)] | = | 1 · x1 + 0 |
| [c6] | = | 0 |
| [c7(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [c8(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [+(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [minus(x1)] | = | 1 · x1 + 0 |
| [*(x1, x2)] | = | 1 · x1 · x2 + 0 |
| [+#(x1, x2)] | = | 1 · x1 + 0 |
| [minus#(x1)] | = | 0 |
| [*#(x1, x2)] | = | 1 · x2 · x1 · x1 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| [p(x1)] | = | 1 + 1 · x1 |
| +#(0,z0) | → | c | (11) |
| +#(s(z0),z1) | → | c1(+#(z0,z1)) | (13) |
| +#(p(z0),z1) | → | c2(+#(z0,z1)) | (15) |
| minus#(0) | → | c3 | (16) |
| minus#(s(z0)) | → | c4(minus#(z0)) | (18) |
| minus#(p(z0)) | → | c5(minus#(z0)) | (20) |
| *#(0,z0) | → | c6 | (22) |
| *#(s(z0),z1) | → | c7(+#(*(z0,z1),z1),*#(z0,z1)) | (24) |
| *#(p(z0),z1) | → | c8(+#(*(z0,z1),minus(z1)),*#(z0,z1),minus#(z1)) | (26) |
| +(s(z0),z1) | → | s(+(z0,z1)) | (12) |
| *(p(z0),z1) | → | +(*(z0,z1),minus(z1)) | (25) |
| minus(0) | → | 0 | (4) |
| *(s(z0),z1) | → | +(*(z0,z1),z1) | (23) |
| minus(p(z0)) | → | s(minus(z0)) | (19) |
| *(0,z0) | → | 0 | (21) |
| minus(s(z0)) | → | p(minus(z0)) | (17) |
| +(p(z0),z1) | → | p(+(z0,z1)) | (14) |
| +(0,z0) | → | z0 | (10) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).