The rewrite relation of the following TRS is considered.
| sqr(0) | → | 0 | (1) |
| sqr(s(x)) | → | +(sqr(x),s(double(x))) | (2) |
| double(0) | → | 0 | (3) |
| double(s(x)) | → | s(s(double(x))) | (4) |
| +(x,0) | → | x | (5) |
| +(x,s(y)) | → | s(+(x,y)) | (6) |
| sqr(s(x)) | → | s(+(sqr(x),double(x))) | (7) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| sqr#(0) |
| sqr#(s(z0)) |
| sqr#(s(z0)) |
| double#(0) |
| double#(s(z0)) |
| +#(z0,0) |
| +#(z0,s(z1)) |
| sqr#(0) | → | c | (8) |
| [c] | = | 0 |
| [c1(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c2(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [sqr(x1)] | = | 1 + 1 · x1 |
| [double(x1)] | = | 0 |
| [+(x1, x2)] | = | 1 + 1 · x2 |
| [sqr#(x1)] | = | 1 |
| [double#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| sqr#(0) | → | c | (8) |
| sqr#(s(z0)) | → | c1(+#(sqr(z0),s(double(z0))),sqr#(z0),double#(z0)) | (10) |
| sqr#(s(z0)) | → | c2(+#(sqr(z0),double(z0)),sqr#(z0),double#(z0)) | (12) |
| double#(0) | → | c3 | (13) |
| double#(s(z0)) | → | c4(double#(z0)) | (15) |
| +#(z0,0) | → | c5 | (17) |
| +#(z0,s(z1)) | → | c6(+#(z0,z1)) | (19) |
| sqr#(s(z0)) | → | c1(+#(sqr(z0),s(double(z0))),sqr#(z0),double#(z0)) | (10) |
| sqr#(s(z0)) | → | c2(+#(sqr(z0),double(z0)),sqr#(z0),double#(z0)) | (12) |
| [c] | = | 0 |
| [c1(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c2(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [sqr(x1)] | = | 3 |
| [double(x1)] | = | 0 |
| [+(x1, x2)] | = | 3 |
| [sqr#(x1)] | = | 1 · x1 + 0 |
| [double#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 0 |
| [0] | = | 0 |
| [s(x1)] | = | 2 + 1 · x1 |
| sqr#(0) | → | c | (8) |
| sqr#(s(z0)) | → | c1(+#(sqr(z0),s(double(z0))),sqr#(z0),double#(z0)) | (10) |
| sqr#(s(z0)) | → | c2(+#(sqr(z0),double(z0)),sqr#(z0),double#(z0)) | (12) |
| double#(0) | → | c3 | (13) |
| double#(s(z0)) | → | c4(double#(z0)) | (15) |
| +#(z0,0) | → | c5 | (17) |
| +#(z0,s(z1)) | → | c6(+#(z0,z1)) | (19) |
| +#(z0,0) | → | c5 | (17) |
| [c] | = | 0 |
| [c1(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c2(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [sqr(x1)] | = | 1 · x1 + 0 |
| [double(x1)] | = | 0 |
| [+(x1, x2)] | = | 1 · x1 + 0 + 1 · x2 |
| [sqr#(x1)] | = | 1 · x1 + 0 |
| [double#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 1 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| sqr#(0) | → | c | (8) |
| sqr#(s(z0)) | → | c1(+#(sqr(z0),s(double(z0))),sqr#(z0),double#(z0)) | (10) |
| sqr#(s(z0)) | → | c2(+#(sqr(z0),double(z0)),sqr#(z0),double#(z0)) | (12) |
| double#(0) | → | c3 | (13) |
| double#(s(z0)) | → | c4(double#(z0)) | (15) |
| +#(z0,0) | → | c5 | (17) |
| +#(z0,s(z1)) | → | c6(+#(z0,z1)) | (19) |
| double#(0) | → | c3 | (13) |
| [c] | = | 0 |
| [c1(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c2(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [sqr(x1)] | = | 1 |
| [double(x1)] | = | 0 |
| [+(x1, x2)] | = | 1 · x2 + 0 |
| [sqr#(x1)] | = | 1 · x1 + 0 |
| [double#(x1)] | = | 1 |
| [+#(x1, x2)] | = | 0 |
| [0] | = | 1 |
| [s(x1)] | = | 1 + 1 · x1 |
| sqr#(0) | → | c | (8) |
| sqr#(s(z0)) | → | c1(+#(sqr(z0),s(double(z0))),sqr#(z0),double#(z0)) | (10) |
| sqr#(s(z0)) | → | c2(+#(sqr(z0),double(z0)),sqr#(z0),double#(z0)) | (12) |
| double#(0) | → | c3 | (13) |
| double#(s(z0)) | → | c4(double#(z0)) | (15) |
| +#(z0,0) | → | c5 | (17) |
| +#(z0,s(z1)) | → | c6(+#(z0,z1)) | (19) |
| double#(s(z0)) | → | c4(double#(z0)) | (15) |
| [c] | = | 0 |
| [c1(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c2(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [sqr(x1)] | = | 0 |
| [double(x1)] | = | 0 |
| [+(x1, x2)] | = | 2 |
| [sqr#(x1)] | = | 1 · x1 · x1 + 0 |
| [double#(x1)] | = | 1 · x1 + 0 |
| [+#(x1, x2)] | = | 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| sqr#(0) | → | c | (8) |
| sqr#(s(z0)) | → | c1(+#(sqr(z0),s(double(z0))),sqr#(z0),double#(z0)) | (10) |
| sqr#(s(z0)) | → | c2(+#(sqr(z0),double(z0)),sqr#(z0),double#(z0)) | (12) |
| double#(0) | → | c3 | (13) |
| double#(s(z0)) | → | c4(double#(z0)) | (15) |
| +#(z0,0) | → | c5 | (17) |
| +#(z0,s(z1)) | → | c6(+#(z0,z1)) | (19) |
| +#(z0,s(z1)) | → | c6(+#(z0,z1)) | (19) |
| [c] | = | 0 |
| [c1(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c2(x1, x2, x3)] | = | 1 · x1 + 0 + 1 · x2 + 1 · x3 |
| [c3] | = | 0 |
| [c4(x1)] | = | 1 · x1 + 0 |
| [c5] | = | 0 |
| [c6(x1)] | = | 1 · x1 + 0 |
| [sqr(x1)] | = | 2 + 2 · x1 · x1 |
| [double(x1)] | = | 2 · x1 + 0 |
| [+(x1, x2)] | = | 2 + 2 · x2 |
| [sqr#(x1)] | = | 1 · x1 · x1 + 0 |
| [double#(x1)] | = | 0 |
| [+#(x1, x2)] | = | 1 · x2 + 0 |
| [0] | = | 0 |
| [s(x1)] | = | 1 + 1 · x1 |
| sqr#(0) | → | c | (8) |
| sqr#(s(z0)) | → | c1(+#(sqr(z0),s(double(z0))),sqr#(z0),double#(z0)) | (10) |
| sqr#(s(z0)) | → | c2(+#(sqr(z0),double(z0)),sqr#(z0),double#(z0)) | (12) |
| double#(0) | → | c3 | (13) |
| double#(s(z0)) | → | c4(double#(z0)) | (15) |
| +#(z0,0) | → | c5 | (17) |
| +#(z0,s(z1)) | → | c6(+#(z0,z1)) | (19) |
| double(0) | → | 0 | (3) |
| double(s(z0)) | → | s(s(double(z0))) | (14) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).