The rewrite relation of the following TRS is considered.
| not(x) | → | xor(x,true) | (1) |
| implies(x,y) | → | xor(and(x,y),xor(x,true)) | (2) |
| or(x,y) | → | xor(and(x,y),xor(x,y)) | (3) |
| =(x,y) | → | xor(x,xor(y,true)) | (4) |
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
||||||||
|
originates from |
|
| not#(z0) |
| implies#(z0,z1) |
| or#(z0,z1) |
| =#(z0,z1) |
| not(z0) | → | xor(z0,true) | (5) |
| implies(z0,z1) | → | xor(and(z0,z1),xor(z0,true)) | (7) |
| or(z0,z1) | → | xor(and(z0,z1),xor(z0,z1)) | (9) |
| =(z0,z1) | → | xor(z0,xor(z1,true)) | (11) |
| implies#(z0,z1) | → | c1 | (8) |
| =#(z0,z1) | → | c3 | (12) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2] | = | 0 |
| [c3] | = | 0 |
| [not#(x1)] | = | 0 |
| [implies#(x1, x2)] | = | 1 |
| [or#(x1, x2)] | = | 0 |
| [=#(x1, x2)] | = | 1 |
| not#(z0) | → | c | (6) |
| implies#(z0,z1) | → | c1 | (8) |
| or#(z0,z1) | → | c2 | (10) |
| =#(z0,z1) | → | c3 | (12) |
| or#(z0,z1) | → | c2 | (10) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2] | = | 0 |
| [c3] | = | 0 |
| [not#(x1)] | = | 0 |
| [implies#(x1, x2)] | = | 0 |
| [or#(x1, x2)] | = | 1 |
| [=#(x1, x2)] | = | 0 |
| not#(z0) | → | c | (6) |
| implies#(z0,z1) | → | c1 | (8) |
| or#(z0,z1) | → | c2 | (10) |
| =#(z0,z1) | → | c3 | (12) |
| not#(z0) | → | c | (6) |
| [c] | = | 0 |
| [c1] | = | 0 |
| [c2] | = | 0 |
| [c3] | = | 0 |
| [not#(x1)] | = | 1 |
| [implies#(x1, x2)] | = | 0 |
| [or#(x1, x2)] | = | 0 |
| [=#(x1, x2)] | = | 0 |
| not#(z0) | → | c | (6) |
| implies#(z0,z1) | → | c1 | (8) |
| or#(z0,z1) | → | c2 | (10) |
| =#(z0,z1) | → | c3 | (12) |
There are no rules in the TRS R. Hence, R/S has complexity O(1).