Certification Problem

Input (TPDB Runtime_Complexity_Innermost_Rewriting/Transformed_CSR_04/Ex1_Luc02b_Z)

The rewrite relation of the following TRS is considered.

from(X) cons(X,n__from(s(X))) (1)
first(0,Z) nil (2)
first(s(X),cons(Y,Z)) cons(Y,n__first(X,activate(Z))) (3)
sel(0,cons(X,Z)) X (4)
sel(s(X),cons(Y,Z)) sel(X,activate(Z)) (5)
from(X) n__from(X) (6)
first(X1,X2) n__first(X1,X2) (7)
activate(n__from(X)) from(X) (8)
activate(n__first(X1,X2)) first(X1,X2) (9)
activate(X) X (10)
The evaluation strategy is innermost.

Property / Task

Determine bounds on the runtime complexity.

Answer / Result

An upperbound for the complexity is O(n3).

Proof (by AProVE @ termCOMP 2023)

1 Dependency Tuples

We get the following set of dependency tuples:
from#(z0) c (12)
originates from
from(z0) cons(z0,n__from(s(z0))) (11)
from#(z0) c1 (14)
originates from
from(z0) n__from(z0) (13)
first#(0,z0) c2 (16)
originates from
first(0,z0) nil (15)
first#(s(z0),cons(z1,z2)) c3(activate#(z2)) (18)
originates from
first(s(z0),cons(z1,z2)) cons(z1,n__first(z0,activate(z2))) (17)
first#(z0,z1) c4 (20)
originates from
first(z0,z1) n__first(z0,z1) (19)
sel#(0,cons(z0,z1)) c5 (22)
originates from
sel(0,cons(z0,z1)) z0 (21)
sel#(s(z0),cons(z1,z2)) c6(sel#(z0,activate(z2)),activate#(z2)) (24)
originates from
sel(s(z0),cons(z1,z2)) sel(z0,activate(z2)) (23)
activate#(n__from(z0)) c7(from#(z0)) (26)
originates from
activate(n__from(z0)) from(z0) (25)
activate#(n__first(z0,z1)) c8(first#(z0,z1)) (28)
originates from
activate(n__first(z0,z1)) first(z0,z1) (27)
activate#(z0) c9 (30)
originates from
activate(z0) z0 (29)
Moreover, we add the following terms to the innermost strategy.
from#(z0)
from#(z0)
first#(0,z0)
first#(s(z0),cons(z1,z2))
first#(z0,z1)
sel#(0,cons(z0,z1))
sel#(s(z0),cons(z1,z2))
activate#(n__from(z0))
activate#(n__first(z0,z1))
activate#(z0)

1.1 Usable Rules

We remove the following rules since they are not usable.
sel(0,cons(z0,z1)) z0 (21)
sel(s(z0),cons(z1,z2)) sel(z0,activate(z2)) (23)

1.1.1 Rule Shifting

The rules
sel#(0,cons(z0,z1)) c5 (22)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4] = 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7(x1)] = 1 · x1 + 0
[c8(x1)] = 1 · x1 + 0
[c9] = 0
[activate(x1)] = 3 + 3 · x1
[from(x1)] = 0
[first(x1, x2)] = 1 + 3 · x1 + 3 · x2
[from#(x1)] = 0
[first#(x1, x2)] = 0
[sel#(x1, x2)] = 1
[activate#(x1)] = 0
[n__from(x1)] = 0
[n__first(x1, x2)] = 1 + 1 · x1 + 1 · x2
[0] = 3
[nil] = 0
[s(x1)] = 3 + 1 · x1
[cons(x1, x2)] = 1 · x2 + 0
which has the intended complexity. Here, only the following usable rules have been considered:
from#(z0) c (12)
from#(z0) c1 (14)
first#(0,z0) c2 (16)
first#(s(z0),cons(z1,z2)) c3(activate#(z2)) (18)
first#(z0,z1) c4 (20)
sel#(0,cons(z0,z1)) c5 (22)
sel#(s(z0),cons(z1,z2)) c6(sel#(z0,activate(z2)),activate#(z2)) (24)
activate#(n__from(z0)) c7(from#(z0)) (26)
activate#(n__first(z0,z1)) c8(first#(z0,z1)) (28)
activate#(z0) c9 (30)

1.1.1.1 Rule Shifting

The rules
from#(z0) c (12)
from#(z0) c1 (14)
first#(0,z0) c2 (16)
first#(z0,z1) c4 (20)
sel#(s(z0),cons(z1,z2)) c6(sel#(z0,activate(z2)),activate#(z2)) (24)
activate#(z0) c9 (30)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4] = 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7(x1)] = 1 · x1 + 0
[c8(x1)] = 1 · x1 + 0
[c9] = 0
[activate(x1)] = 3 + 3 · x1
[from(x1)] = 3
[first(x1, x2)] = 2 + 3 · x1 + 3 · x2
[from#(x1)] = 1
[first#(x1, x2)] = 1
[sel#(x1, x2)] = 1 · x1 + 0
[activate#(x1)] = 1
[n__from(x1)] = 0
[n__first(x1, x2)] = 2 + 1 · x1 + 1 · x2
[0] = 3
[nil] = 3
[s(x1)] = 3 + 1 · x1
[cons(x1, x2)] = 3 + 1 · x2
which has the intended complexity. Here, only the following usable rules have been considered:
from#(z0) c (12)
from#(z0) c1 (14)
first#(0,z0) c2 (16)
first#(s(z0),cons(z1,z2)) c3(activate#(z2)) (18)
first#(z0,z1) c4 (20)
sel#(0,cons(z0,z1)) c5 (22)
sel#(s(z0),cons(z1,z2)) c6(sel#(z0,activate(z2)),activate#(z2)) (24)
activate#(n__from(z0)) c7(from#(z0)) (26)
activate#(n__first(z0,z1)) c8(first#(z0,z1)) (28)
activate#(z0) c9 (30)

1.1.1.1.1 Rule Shifting

The rules
activate#(n__from(z0)) c7(from#(z0)) (26)
are strictly oriented by the following linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4] = 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7(x1)] = 1 · x1 + 0
[c8(x1)] = 1 · x1 + 0
[c9] = 0
[activate(x1)] = 3
[from(x1)] = 3 + 3 · x1
[first(x1, x2)] = 3
[from#(x1)] = 0
[first#(x1, x2)] = 1
[sel#(x1, x2)] = 2 · x1 + 0
[activate#(x1)] = 1
[n__from(x1)] = 3 + 1 · x1
[n__first(x1, x2)] = 1 · x1 + 0
[0] = 3
[nil] = 3
[s(x1)] = 2 + 1 · x1
[cons(x1, x2)] = 1 · x1 + 0
which has the intended complexity. Here, only the following usable rules have been considered:
from#(z0) c (12)
from#(z0) c1 (14)
first#(0,z0) c2 (16)
first#(s(z0),cons(z1,z2)) c3(activate#(z2)) (18)
first#(z0,z1) c4 (20)
sel#(0,cons(z0,z1)) c5 (22)
sel#(s(z0),cons(z1,z2)) c6(sel#(z0,activate(z2)),activate#(z2)) (24)
activate#(n__from(z0)) c7(from#(z0)) (26)
activate#(n__first(z0,z1)) c8(first#(z0,z1)) (28)
activate#(z0) c9 (30)

1.1.1.1.1.1 Rule Shifting

The rules
activate#(n__first(z0,z1)) c8(first#(z0,z1)) (28)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4] = 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7(x1)] = 1 · x1 + 0
[c8(x1)] = 1 · x1 + 0
[c9] = 0
[activate(x1)] = 1 · x1 + 0
[from(x1)] = 1
[first(x1, x2)] = 1 + 1 · x2
[from#(x1)] = 1
[first#(x1, x2)] = 1 · x2 + 0
[sel#(x1, x2)] = 1 · x2 · x1 · x1 + 0
[activate#(x1)] = 1 · x1 + 0
[n__from(x1)] = 1
[n__first(x1, x2)] = 1 + 1 · x2
[0] = 1
[nil] = 1
[s(x1)] = 1 + 1 · x1
[cons(x1, x2)] = 1 · x2 + 0
which has the intended complexity. Here, only the following usable rules have been considered:
from#(z0) c (12)
from#(z0) c1 (14)
first#(0,z0) c2 (16)
first#(s(z0),cons(z1,z2)) c3(activate#(z2)) (18)
first#(z0,z1) c4 (20)
sel#(0,cons(z0,z1)) c5 (22)
sel#(s(z0),cons(z1,z2)) c6(sel#(z0,activate(z2)),activate#(z2)) (24)
activate#(n__from(z0)) c7(from#(z0)) (26)
activate#(n__first(z0,z1)) c8(first#(z0,z1)) (28)
activate#(z0) c9 (30)
first(z0,z1) n__first(z0,z1) (19)
from(z0) cons(z0,n__from(s(z0))) (11)
first(s(z0),cons(z1,z2)) cons(z1,n__first(z0,activate(z2))) (17)
first(0,z0) nil (15)
from(z0) n__from(z0) (13)
activate(n__from(z0)) from(z0) (25)
activate(z0) z0 (29)
activate(n__first(z0,z1)) first(z0,z1) (27)

1.1.1.1.1.1.1 Rule Shifting

The rules
first#(s(z0),cons(z1,z2)) c3(activate#(z2)) (18)
are strictly oriented by the following non-linear polynomial interpretation over the naturals
[c] = 0
[c1] = 0
[c2] = 0
[c3(x1)] = 1 · x1 + 0
[c4] = 0
[c5] = 0
[c6(x1, x2)] = 1 · x1 + 0 + 1 · x2
[c7(x1)] = 1 · x1 + 0
[c8(x1)] = 1 · x1 + 0
[c9] = 0
[activate(x1)] = 2 + 1 · x1
[from(x1)] = 0
[first(x1, x2)] = 2 + 1 · x1 + 1 · x2
[from#(x1)] = 0
[first#(x1, x2)] = 1 + 2 · x2
[sel#(x1, x2)] = 1 · x1 · x2 + 0 + 2 · x1 · x1
[activate#(x1)] = 2 · x1 + 0
[n__from(x1)] = 0
[n__first(x1, x2)] = 2 + 1 · x1 + 1 · x2
[0] = 2
[nil] = 1
[s(x1)] = 2 + 1 · x1
[cons(x1, x2)] = 1 · x2 + 0
which has the intended complexity. Here, only the following usable rules have been considered:
from#(z0) c (12)
from#(z0) c1 (14)
first#(0,z0) c2 (16)
first#(s(z0),cons(z1,z2)) c3(activate#(z2)) (18)
first#(z0,z1) c4 (20)
sel#(0,cons(z0,z1)) c5 (22)
sel#(s(z0),cons(z1,z2)) c6(sel#(z0,activate(z2)),activate#(z2)) (24)
activate#(n__from(z0)) c7(from#(z0)) (26)
activate#(n__first(z0,z1)) c8(first#(z0,z1)) (28)
activate#(z0) c9 (30)
first(z0,z1) n__first(z0,z1) (19)
from(z0) cons(z0,n__from(s(z0))) (11)
first(s(z0),cons(z1,z2)) cons(z1,n__first(z0,activate(z2))) (17)
first(0,z0) nil (15)
from(z0) n__from(z0) (13)
activate(n__from(z0)) from(z0) (25)
activate(z0) z0 (29)
activate(n__first(z0,z1)) first(z0,z1) (27)

1.1.1.1.1.1.1.1 R is empty

There are no rules in the TRS R. Hence, R/S has complexity O(1).