The relative rewrite relation R/S is considered where R is the following TRS
a(a(b(b(a(a(x1)))))) | → | a(a(b(b(b(b(a(a(x1)))))))) | (1) |
b(b(a(a(b(b(x1)))))) | → | b(b(a(a(a(a(b(b(x1)))))))) | (2) |
and S is the following TRS.
b(b(x1)) | → | b(b(b(b(b(b(x1)))))) | (3) |
a(a(x1)) | → | a(a(a(a(a(a(x1)))))) | (4) |
a(a(b(b(a(a(x1)))))) | → | a(a(b(b(b(b(a(a(x1)))))))) | (1) |
b(b(a(a(b(b(x1)))))) | → | b(b(a(a(a(a(b(b(x1)))))))) | (2) |
b(b(x1)) | → | b(b(b(b(b(b(x1)))))) | (3) |
a(a(x1)) | → | a(a(a(a(a(a(x1)))))) | (4) |
Root-labeling is applied.
We obtain the labeled TRSaa(ab(bb(ba(aa(aa(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(aa(x1)))))))) | (5) |
aa(ab(bb(ba(aa(ab(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(ab(x1)))))))) | (6) |
bb(ba(aa(ab(bb(ba(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(ba(x1)))))))) | (7) |
bb(ba(aa(ab(bb(bb(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(bb(x1)))))))) | (8) |
bb(ba(x1)) | → | bb(bb(bb(bb(bb(ba(x1)))))) | (9) |
bb(bb(x1)) | → | bb(bb(bb(bb(bb(bb(x1)))))) | (10) |
aa(aa(x1)) | → | aa(aa(aa(aa(aa(aa(x1)))))) | (11) |
aa(ab(x1)) | → | aa(aa(aa(aa(aa(ab(x1)))))) | (12) |
[aa(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
||||||||||||||||||
[bb(x1)] | = |
|
||||||||||||||||||
[ba(x1)] | = |
|
aa(ab(bb(ba(aa(ab(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(ab(x1)))))))) | (6) |
[aa(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
||||||||||||||||||
[bb(x1)] | = |
|
||||||||||||||||||
[ba(x1)] | = |
|
aa(ab(bb(ba(aa(aa(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(aa(x1)))))))) | (5) |
[bb(x1)] | = |
|
||||||||||||||||||
[ba(x1)] | = |
|
||||||||||||||||||
[aa(x1)] | = |
|
||||||||||||||||||
[ab(x1)] | = |
|
bb(ba(aa(ab(bb(ba(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(ba(x1)))))))) | (7) |
bb(ba(aa(ab(bb(bb(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(bb(x1)))))))) | (8) |
There are no rules in the TRS. Hence, it is terminating.