The relative rewrite relation R/S is considered where R is the following TRS
| a(a(b(b(a(a(x1)))))) | → | a(a(b(b(b(b(a(a(x1)))))))) | (1) |
| b(b(a(a(b(b(x1)))))) | → | b(b(a(a(a(a(b(b(x1)))))))) | (2) |
and S is the following TRS.
| b(b(x1)) | → | b(b(b(b(b(b(x1)))))) | (3) |
| a(a(x1)) | → | a(a(a(a(a(a(x1)))))) | (4) |
| a(a(b(b(a(a(x1)))))) | → | a(a(b(b(b(b(a(a(x1)))))))) | (1) |
| b(b(a(a(b(b(x1)))))) | → | b(b(a(a(a(a(b(b(x1)))))))) | (2) |
| b(b(x1)) | → | b(b(b(b(b(b(x1)))))) | (3) |
| a(a(x1)) | → | a(a(a(a(a(a(x1)))))) | (4) |
Root-labeling is applied.
We obtain the labeled TRS| aa(ab(bb(ba(aa(aa(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(aa(x1)))))))) | (5) |
| aa(ab(bb(ba(aa(ab(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(ab(x1)))))))) | (6) |
| bb(ba(aa(ab(bb(ba(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(ba(x1)))))))) | (7) |
| bb(ba(aa(ab(bb(bb(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(bb(x1)))))))) | (8) |
| bb(ba(x1)) | → | bb(bb(bb(bb(bb(ba(x1)))))) | (9) |
| bb(bb(x1)) | → | bb(bb(bb(bb(bb(bb(x1)))))) | (10) |
| aa(aa(x1)) | → | aa(aa(aa(aa(aa(aa(x1)))))) | (11) |
| aa(ab(x1)) | → | aa(aa(aa(aa(aa(ab(x1)))))) | (12) |
| [aa(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
| aa(ab(bb(ba(aa(ab(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(ab(x1)))))))) | (6) |
| [aa(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
||||||||||||||||||
| [bb(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
| aa(ab(bb(ba(aa(aa(x1)))))) | → | aa(ab(bb(bb(bb(ba(aa(aa(x1)))))))) | (5) |
| [bb(x1)] | = |
|
||||||||||||||||||
| [ba(x1)] | = |
|
||||||||||||||||||
| [aa(x1)] | = |
|
||||||||||||||||||
| [ab(x1)] | = |
|
| bb(ba(aa(ab(bb(ba(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(ba(x1)))))))) | (7) |
| bb(ba(aa(ab(bb(bb(x1)))))) | → | bb(ba(aa(aa(aa(ab(bb(bb(x1)))))))) | (8) |
There are no rules in the TRS. Hence, it is terminating.