The rewrite relation of the following TRS is considered.
| a(b(a(x1))) | → | c(c(c(x1))) | (1) |
| c(c(c(x1))) | → | a(c(a(x1))) | (2) |
| a(x1) | → | b(c(b(x1))) | (3) |
| c#(c(c(x1))) | → | c#(a(x1)) | (4) |
| c#(c(c(x1))) | → | a#(x1) | (5) |
| c#(c(c(x1))) | → | a#(c(a(x1))) | (6) |
| a#(x1) | → | c#(b(x1)) | (7) |
| a#(b(a(x1))) | → | c#(x1) | (8) |
| a#(b(a(x1))) | → | c#(c(x1)) | (9) |
| a#(b(a(x1))) | → | c#(c(c(x1))) | (10) |
The dependency pairs are split into 1 component.
| c#(c(c(x1))) | → | c#(a(x1)) | (4) |
| c#(c(c(x1))) | → | a#(x1) | (5) |
| a#(b(a(x1))) | → | c#(x1) | (8) |
| c#(c(c(x1))) | → | a#(c(a(x1))) | (6) |
| a#(b(a(x1))) | → | c#(c(x1)) | (9) |
| a#(b(a(x1))) | → | c#(c(c(x1))) | (10) |
| [c(x1)] | = |
|
||||||||||||
| [b(x1)] | = |
|
||||||||||||
| [a(x1)] | = |
|
||||||||||||
| [c#(x1)] | = |
|
||||||||||||
| [a#(x1)] | = |
|
| a(b(a(x1))) | → | c(c(c(x1))) | (1) |
| c(c(c(x1))) | → | a(c(a(x1))) | (2) |
| a(x1) | → | b(c(b(x1))) | (3) |
| c#(c(c(x1))) | → | c#(a(x1)) | (4) |
| a#(b(a(x1))) | → | c#(x1) | (8) |
| a#(b(a(x1))) | → | c#(c(x1)) | (9) |
The dependency pairs are split into 1 component.
| c#(c(c(x1))) | → | a#(x1) | (5) |
| a#(b(a(x1))) | → | c#(c(c(x1))) | (10) |
| c#(c(c(x1))) | → | a#(c(a(x1))) | (6) |
| [c(x1)] | = |
|
||||||||||||
| [b(x1)] | = |
|
||||||||||||
| [a(x1)] | = |
|
||||||||||||
| [c#(x1)] | = |
|
||||||||||||
| [a#(x1)] | = |
|
| a(b(a(x1))) | → | c(c(c(x1))) | (1) |
| c(c(c(x1))) | → | a(c(a(x1))) | (2) |
| a(x1) | → | b(c(b(x1))) | (3) |
| c#(c(c(x1))) | → | a#(x1) | (5) |
| a#(b(a(x1))) | → | c#(c(c(x1))) | (10) |
| [c(x1)] | = |
x1 +
|
||||
| [b(x1)] | = |
x1 +
|
||||
| [a(x1)] | = |
x1 +
|
||||
| [c#(x1)] | = |
x1 +
|
||||
| [a#(x1)] | = |
x1 +
|
| a(b(a(x1))) | → | c(c(c(x1))) | (1) |
| c(c(c(x1))) | → | a(c(a(x1))) | (2) |
| a(x1) | → | b(c(b(x1))) | (3) |
| c#(c(c(x1))) | → | a#(c(a(x1))) | (6) |
The dependency pairs are split into 0 components.