The rewrite relation of the following TRS is considered.
| a(a(b(x1))) | → | c(c(a(x1))) | (1) |
| c(b(c(x1))) | → | c(b(b(x1))) | (2) |
| a(b(b(x1))) | → | b(c(c(x1))) | (3) |
| c(a(b(x1))) | → | a(b(a(x1))) | (4) |
| b(b(b(x1))) | → | a(b(c(x1))) | (5) |
| b(a(a(x1))) | → | a(b(a(x1))) | (6) |
| c(b(b(x1))) | → | c(a(b(x1))) | (7) |
We split R in the relative problem D/R-D and R-D, where the rules D
| b(b(b(x1))) | → | a(b(c(x1))) | (5) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRS| c(b(b(b(x1)))) | → | c(a(b(c(x1)))) | (8) |
| b(b(b(b(x1)))) | → | b(a(b(c(x1)))) | (9) |
| a(b(b(b(x1)))) | → | a(a(b(c(x1)))) | (10) |
| c(a(a(b(x1)))) | → | c(c(c(a(x1)))) | (11) |
| c(c(b(c(x1)))) | → | c(c(b(b(x1)))) | (12) |
| c(a(b(b(x1)))) | → | c(b(c(c(x1)))) | (13) |
| c(c(a(b(x1)))) | → | c(a(b(a(x1)))) | (14) |
| c(b(a(a(x1)))) | → | c(a(b(a(x1)))) | (15) |
| c(c(b(b(x1)))) | → | c(c(a(b(x1)))) | (16) |
| b(a(a(b(x1)))) | → | b(c(c(a(x1)))) | (17) |
| b(c(b(c(x1)))) | → | b(c(b(b(x1)))) | (18) |
| b(a(b(b(x1)))) | → | b(b(c(c(x1)))) | (19) |
| b(c(a(b(x1)))) | → | b(a(b(a(x1)))) | (20) |
| b(b(a(a(x1)))) | → | b(a(b(a(x1)))) | (21) |
| b(c(b(b(x1)))) | → | b(c(a(b(x1)))) | (22) |
| a(a(a(b(x1)))) | → | a(c(c(a(x1)))) | (23) |
| a(c(b(c(x1)))) | → | a(c(b(b(x1)))) | (24) |
| a(a(b(b(x1)))) | → | a(b(c(c(x1)))) | (25) |
| a(c(a(b(x1)))) | → | a(a(b(a(x1)))) | (26) |
| a(b(a(a(x1)))) | → | a(a(b(a(x1)))) | (27) |
| a(c(b(b(x1)))) | → | a(c(a(b(x1)))) | (28) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRS| c(c(b(b(b(x1))))) | → | c(c(a(b(c(x1))))) | (29) |
| c(b(b(b(b(x1))))) | → | c(b(a(b(c(x1))))) | (30) |
| c(a(b(b(b(x1))))) | → | c(a(a(b(c(x1))))) | (31) |
| b(c(b(b(b(x1))))) | → | b(c(a(b(c(x1))))) | (32) |
| b(b(b(b(b(x1))))) | → | b(b(a(b(c(x1))))) | (33) |
| b(a(b(b(b(x1))))) | → | b(a(a(b(c(x1))))) | (34) |
| a(c(b(b(b(x1))))) | → | a(c(a(b(c(x1))))) | (35) |
| a(b(b(b(b(x1))))) | → | a(b(a(b(c(x1))))) | (36) |
| a(a(b(b(b(x1))))) | → | a(a(a(b(c(x1))))) | (37) |
| c(c(a(a(b(x1))))) | → | c(c(c(c(a(x1))))) | (38) |
| c(c(c(b(c(x1))))) | → | c(c(c(b(b(x1))))) | (39) |
| c(c(a(b(b(x1))))) | → | c(c(b(c(c(x1))))) | (40) |
| c(c(c(a(b(x1))))) | → | c(c(a(b(a(x1))))) | (41) |
| c(c(b(a(a(x1))))) | → | c(c(a(b(a(x1))))) | (42) |
| c(c(c(b(b(x1))))) | → | c(c(c(a(b(x1))))) | (43) |
| c(b(a(a(b(x1))))) | → | c(b(c(c(a(x1))))) | (44) |
| c(b(c(b(c(x1))))) | → | c(b(c(b(b(x1))))) | (45) |
| c(b(a(b(b(x1))))) | → | c(b(b(c(c(x1))))) | (46) |
| c(b(c(a(b(x1))))) | → | c(b(a(b(a(x1))))) | (47) |
| c(b(b(a(a(x1))))) | → | c(b(a(b(a(x1))))) | (48) |
| c(b(c(b(b(x1))))) | → | c(b(c(a(b(x1))))) | (49) |
| c(a(a(a(b(x1))))) | → | c(a(c(c(a(x1))))) | (50) |
| c(a(c(b(c(x1))))) | → | c(a(c(b(b(x1))))) | (51) |
| c(a(a(b(b(x1))))) | → | c(a(b(c(c(x1))))) | (52) |
| c(a(c(a(b(x1))))) | → | c(a(a(b(a(x1))))) | (53) |
| c(a(b(a(a(x1))))) | → | c(a(a(b(a(x1))))) | (54) |
| c(a(c(b(b(x1))))) | → | c(a(c(a(b(x1))))) | (55) |
| b(c(a(a(b(x1))))) | → | b(c(c(c(a(x1))))) | (56) |
| b(c(c(b(c(x1))))) | → | b(c(c(b(b(x1))))) | (57) |
| b(c(a(b(b(x1))))) | → | b(c(b(c(c(x1))))) | (58) |
| b(c(c(a(b(x1))))) | → | b(c(a(b(a(x1))))) | (59) |
| b(c(b(a(a(x1))))) | → | b(c(a(b(a(x1))))) | (60) |
| b(c(c(b(b(x1))))) | → | b(c(c(a(b(x1))))) | (61) |
| b(b(a(a(b(x1))))) | → | b(b(c(c(a(x1))))) | (62) |
| b(b(c(b(c(x1))))) | → | b(b(c(b(b(x1))))) | (63) |
| b(b(a(b(b(x1))))) | → | b(b(b(c(c(x1))))) | (64) |
| b(b(c(a(b(x1))))) | → | b(b(a(b(a(x1))))) | (65) |
| b(b(b(a(a(x1))))) | → | b(b(a(b(a(x1))))) | (66) |
| b(b(c(b(b(x1))))) | → | b(b(c(a(b(x1))))) | (67) |
| b(a(a(a(b(x1))))) | → | b(a(c(c(a(x1))))) | (68) |
| b(a(c(b(c(x1))))) | → | b(a(c(b(b(x1))))) | (69) |
| b(a(a(b(b(x1))))) | → | b(a(b(c(c(x1))))) | (70) |
| b(a(c(a(b(x1))))) | → | b(a(a(b(a(x1))))) | (71) |
| b(a(b(a(a(x1))))) | → | b(a(a(b(a(x1))))) | (72) |
| b(a(c(b(b(x1))))) | → | b(a(c(a(b(x1))))) | (73) |
| a(c(a(a(b(x1))))) | → | a(c(c(c(a(x1))))) | (74) |
| a(c(c(b(c(x1))))) | → | a(c(c(b(b(x1))))) | (75) |
| a(c(a(b(b(x1))))) | → | a(c(b(c(c(x1))))) | (76) |
| a(c(c(a(b(x1))))) | → | a(c(a(b(a(x1))))) | (77) |
| a(c(b(a(a(x1))))) | → | a(c(a(b(a(x1))))) | (78) |
| a(c(c(b(b(x1))))) | → | a(c(c(a(b(x1))))) | (79) |
| a(b(a(a(b(x1))))) | → | a(b(c(c(a(x1))))) | (80) |
| a(b(c(b(c(x1))))) | → | a(b(c(b(b(x1))))) | (81) |
| a(b(a(b(b(x1))))) | → | a(b(b(c(c(x1))))) | (82) |
| a(b(c(a(b(x1))))) | → | a(b(a(b(a(x1))))) | (83) |
| a(b(b(a(a(x1))))) | → | a(b(a(b(a(x1))))) | (84) |
| a(b(c(b(b(x1))))) | → | a(b(c(a(b(x1))))) | (85) |
| a(a(a(a(b(x1))))) | → | a(a(c(c(a(x1))))) | (86) |
| a(a(c(b(c(x1))))) | → | a(a(c(b(b(x1))))) | (87) |
| a(a(a(b(b(x1))))) | → | a(a(b(c(c(x1))))) | (88) |
| a(a(c(a(b(x1))))) | → | a(a(a(b(a(x1))))) | (89) |
| a(a(b(a(a(x1))))) | → | a(a(a(b(a(x1))))) | (90) |
| a(a(c(b(b(x1))))) | → | a(a(c(a(b(x1))))) | (91) |
As carrier we take the set {0,...,8}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 9):
| [c(x1)] | = | 3x1 + 0 |
| [b(x1)] | = | 3x1 + 1 |
| [a(x1)] | = | 3x1 + 2 |
There are 567 ruless (increase limit for explicit display).
| [c0(x1)] | = |
x1 +
|
||||
| [c3(x1)] | = |
x1 +
|
||||
| [c6(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c4(x1)] | = |
x1 +
|
||||
| [c7(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c5(x1)] | = |
x1 +
|
||||
| [c8(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b3(x1)] | = |
x1 +
|
||||
| [b6(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b4(x1)] | = |
x1 +
|
||||
| [b7(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b5(x1)] | = |
x1 +
|
||||
| [b8(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a3(x1)] | = |
x1 +
|
||||
| [a6(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
||||
| [a4(x1)] | = |
x1 +
|
||||
| [a7(x1)] | = |
x1 +
|
||||
| [a2(x1)] | = |
x1 +
|
||||
| [a5(x1)] | = |
x1 +
|
||||
| [a8(x1)] | = |
x1 +
|
There are 398 ruless (increase limit for explicit display).
There are no rules in the TRS. Hence, it is terminating.
We split R in the relative problem D/R-D and R-D, where the rules D
| a(a(b(x1))) | → | c(c(a(x1))) | (1) |
| c(b(c(x1))) | → | c(b(b(x1))) | (2) |
| a(b(b(x1))) | → | b(c(c(x1))) | (3) |
| c(a(b(x1))) | → | a(b(a(x1))) | (4) |
| c(b(b(x1))) | → | c(a(b(x1))) | (7) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRS| c(a(a(b(x1)))) | → | c(c(c(a(x1)))) | (11) |
| c(c(b(c(x1)))) | → | c(c(b(b(x1)))) | (12) |
| c(a(b(b(x1)))) | → | c(b(c(c(x1)))) | (13) |
| c(c(a(b(x1)))) | → | c(a(b(a(x1)))) | (14) |
| c(c(b(b(x1)))) | → | c(c(a(b(x1)))) | (16) |
| b(a(a(b(x1)))) | → | b(c(c(a(x1)))) | (17) |
| b(c(b(c(x1)))) | → | b(c(b(b(x1)))) | (18) |
| b(a(b(b(x1)))) | → | b(b(c(c(x1)))) | (19) |
| b(c(a(b(x1)))) | → | b(a(b(a(x1)))) | (20) |
| b(c(b(b(x1)))) | → | b(c(a(b(x1)))) | (22) |
| a(a(a(b(x1)))) | → | a(c(c(a(x1)))) | (23) |
| a(c(b(c(x1)))) | → | a(c(b(b(x1)))) | (24) |
| a(a(b(b(x1)))) | → | a(b(c(c(x1)))) | (25) |
| a(c(a(b(x1)))) | → | a(a(b(a(x1)))) | (26) |
| a(c(b(b(x1)))) | → | a(c(a(b(x1)))) | (28) |
| c(b(a(a(x1)))) | → | c(a(b(a(x1)))) | (15) |
| b(b(a(a(x1)))) | → | b(a(b(a(x1)))) | (21) |
| a(b(a(a(x1)))) | → | a(a(b(a(x1)))) | (27) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRS| c(c(a(a(b(x1))))) | → | c(c(c(c(a(x1))))) | (38) |
| c(c(c(b(c(x1))))) | → | c(c(c(b(b(x1))))) | (39) |
| c(c(a(b(b(x1))))) | → | c(c(b(c(c(x1))))) | (40) |
| c(c(c(a(b(x1))))) | → | c(c(a(b(a(x1))))) | (41) |
| c(c(c(b(b(x1))))) | → | c(c(c(a(b(x1))))) | (43) |
| c(b(a(a(b(x1))))) | → | c(b(c(c(a(x1))))) | (44) |
| c(b(c(b(c(x1))))) | → | c(b(c(b(b(x1))))) | (45) |
| c(b(a(b(b(x1))))) | → | c(b(b(c(c(x1))))) | (46) |
| c(b(c(a(b(x1))))) | → | c(b(a(b(a(x1))))) | (47) |
| c(b(c(b(b(x1))))) | → | c(b(c(a(b(x1))))) | (49) |
| c(a(a(a(b(x1))))) | → | c(a(c(c(a(x1))))) | (50) |
| c(a(c(b(c(x1))))) | → | c(a(c(b(b(x1))))) | (51) |
| c(a(a(b(b(x1))))) | → | c(a(b(c(c(x1))))) | (52) |
| c(a(c(a(b(x1))))) | → | c(a(a(b(a(x1))))) | (53) |
| c(a(c(b(b(x1))))) | → | c(a(c(a(b(x1))))) | (55) |
| b(c(a(a(b(x1))))) | → | b(c(c(c(a(x1))))) | (56) |
| b(c(c(b(c(x1))))) | → | b(c(c(b(b(x1))))) | (57) |
| b(c(a(b(b(x1))))) | → | b(c(b(c(c(x1))))) | (58) |
| b(c(c(a(b(x1))))) | → | b(c(a(b(a(x1))))) | (59) |
| b(c(c(b(b(x1))))) | → | b(c(c(a(b(x1))))) | (61) |
| b(b(a(a(b(x1))))) | → | b(b(c(c(a(x1))))) | (62) |
| b(b(c(b(c(x1))))) | → | b(b(c(b(b(x1))))) | (63) |
| b(b(a(b(b(x1))))) | → | b(b(b(c(c(x1))))) | (64) |
| b(b(c(a(b(x1))))) | → | b(b(a(b(a(x1))))) | (65) |
| b(b(c(b(b(x1))))) | → | b(b(c(a(b(x1))))) | (67) |
| b(a(a(a(b(x1))))) | → | b(a(c(c(a(x1))))) | (68) |
| b(a(c(b(c(x1))))) | → | b(a(c(b(b(x1))))) | (69) |
| b(a(a(b(b(x1))))) | → | b(a(b(c(c(x1))))) | (70) |
| b(a(c(a(b(x1))))) | → | b(a(a(b(a(x1))))) | (71) |
| b(a(c(b(b(x1))))) | → | b(a(c(a(b(x1))))) | (73) |
| a(c(a(a(b(x1))))) | → | a(c(c(c(a(x1))))) | (74) |
| a(c(c(b(c(x1))))) | → | a(c(c(b(b(x1))))) | (75) |
| a(c(a(b(b(x1))))) | → | a(c(b(c(c(x1))))) | (76) |
| a(c(c(a(b(x1))))) | → | a(c(a(b(a(x1))))) | (77) |
| a(c(c(b(b(x1))))) | → | a(c(c(a(b(x1))))) | (79) |
| a(b(a(a(b(x1))))) | → | a(b(c(c(a(x1))))) | (80) |
| a(b(c(b(c(x1))))) | → | a(b(c(b(b(x1))))) | (81) |
| a(b(a(b(b(x1))))) | → | a(b(b(c(c(x1))))) | (82) |
| a(b(c(a(b(x1))))) | → | a(b(a(b(a(x1))))) | (83) |
| a(b(c(b(b(x1))))) | → | a(b(c(a(b(x1))))) | (85) |
| a(a(a(a(b(x1))))) | → | a(a(c(c(a(x1))))) | (86) |
| a(a(c(b(c(x1))))) | → | a(a(c(b(b(x1))))) | (87) |
| a(a(a(b(b(x1))))) | → | a(a(b(c(c(x1))))) | (88) |
| a(a(c(a(b(x1))))) | → | a(a(a(b(a(x1))))) | (89) |
| a(a(c(b(b(x1))))) | → | a(a(c(a(b(x1))))) | (91) |
| c(c(b(a(a(x1))))) | → | c(c(a(b(a(x1))))) | (42) |
| c(b(b(a(a(x1))))) | → | c(b(a(b(a(x1))))) | (48) |
| c(a(b(a(a(x1))))) | → | c(a(a(b(a(x1))))) | (54) |
| b(c(b(a(a(x1))))) | → | b(c(a(b(a(x1))))) | (60) |
| b(b(b(a(a(x1))))) | → | b(b(a(b(a(x1))))) | (66) |
| b(a(b(a(a(x1))))) | → | b(a(a(b(a(x1))))) | (72) |
| a(c(b(a(a(x1))))) | → | a(c(a(b(a(x1))))) | (78) |
| a(b(b(a(a(x1))))) | → | a(b(a(b(a(x1))))) | (84) |
| a(a(b(a(a(x1))))) | → | a(a(a(b(a(x1))))) | (90) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSThere are 162 ruless (increase limit for explicit display).
As carrier we take the set {0,...,26}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 27):
| [c(x1)] | = | 3x1 + 0 |
| [b(x1)] | = | 3x1 + 1 |
| [a(x1)] | = | 3x1 + 2 |
There are 4374 ruless (increase limit for explicit display).
| [c0(x1)] | = |
x1 +
|
||||
| [c9(x1)] | = |
x1 +
|
||||
| [c18(x1)] | = |
x1 +
|
||||
| [c3(x1)] | = |
x1 +
|
||||
| [c12(x1)] | = |
x1 +
|
||||
| [c21(x1)] | = |
x1 +
|
||||
| [c6(x1)] | = |
x1 +
|
||||
| [c15(x1)] | = |
x1 +
|
||||
| [c24(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c10(x1)] | = |
x1 +
|
||||
| [c19(x1)] | = |
x1 +
|
||||
| [c4(x1)] | = |
x1 +
|
||||
| [c13(x1)] | = |
x1 +
|
||||
| [c22(x1)] | = |
x1 +
|
||||
| [c7(x1)] | = |
x1 +
|
||||
| [c16(x1)] | = |
x1 +
|
||||
| [c25(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c11(x1)] | = |
x1 +
|
||||
| [c20(x1)] | = |
x1 +
|
||||
| [c5(x1)] | = |
x1 +
|
||||
| [c14(x1)] | = |
x1 +
|
||||
| [c23(x1)] | = |
x1 +
|
||||
| [c8(x1)] | = |
x1 +
|
||||
| [c17(x1)] | = |
x1 +
|
||||
| [c26(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b9(x1)] | = |
x1 +
|
||||
| [b18(x1)] | = |
x1 +
|
||||
| [b3(x1)] | = |
x1 +
|
||||
| [b12(x1)] | = |
x1 +
|
||||
| [b21(x1)] | = |
x1 +
|
||||
| [b6(x1)] | = |
x1 +
|
||||
| [b15(x1)] | = |
x1 +
|
||||
| [b24(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b10(x1)] | = |
x1 +
|
||||
| [b19(x1)] | = |
x1 +
|
||||
| [b4(x1)] | = |
x1 +
|
||||
| [b13(x1)] | = |
x1 +
|
||||
| [b22(x1)] | = |
x1 +
|
||||
| [b7(x1)] | = |
x1 +
|
||||
| [b16(x1)] | = |
x1 +
|
||||
| [b25(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b11(x1)] | = |
x1 +
|
||||
| [b20(x1)] | = |
x1 +
|
||||
| [b5(x1)] | = |
x1 +
|
||||
| [b14(x1)] | = |
x1 +
|
||||
| [b23(x1)] | = |
x1 +
|
||||
| [b8(x1)] | = |
x1 +
|
||||
| [b17(x1)] | = |
x1 +
|
||||
| [b26(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a9(x1)] | = |
x1 +
|
||||
| [a18(x1)] | = |
x1 +
|
||||
| [a3(x1)] | = |
x1 +
|
||||
| [a12(x1)] | = |
x1 +
|
||||
| [a21(x1)] | = |
x1 +
|
||||
| [a6(x1)] | = |
x1 +
|
||||
| [a15(x1)] | = |
x1 +
|
||||
| [a24(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
||||
| [a10(x1)] | = |
x1 +
|
||||
| [a19(x1)] | = |
x1 +
|
||||
| [a4(x1)] | = |
x1 +
|
||||
| [a13(x1)] | = |
x1 +
|
||||
| [a22(x1)] | = |
x1 +
|
||||
| [a7(x1)] | = |
x1 +
|
||||
| [a16(x1)] | = |
x1 +
|
||||
| [a25(x1)] | = |
x1 +
|
||||
| [a2(x1)] | = |
x1 +
|
||||
| [a11(x1)] | = |
x1 +
|
||||
| [a20(x1)] | = |
x1 +
|
||||
| [a5(x1)] | = |
x1 +
|
||||
| [a14(x1)] | = |
x1 +
|
||||
| [a23(x1)] | = |
x1 +
|
||||
| [a8(x1)] | = |
x1 +
|
||||
| [a17(x1)] | = |
x1 +
|
||||
| [a26(x1)] | = |
x1 +
|
There are 3780 ruless (increase limit for explicit display).
There are 594 ruless (increase limit for explicit display).
| [c0(x1)] | = |
|
||||||||
| [c9(x1)] | = |
|
||||||||
| [c18(x1)] | = |
|
||||||||
| [c3(x1)] | = |
|
||||||||
| [c12(x1)] | = |
|
||||||||
| [c21(x1)] | = |
|
||||||||
| [c6(x1)] | = |
|
||||||||
| [c15(x1)] | = |
|
||||||||
| [c24(x1)] | = |
|
||||||||
| [c1(x1)] | = |
|
||||||||
| [c10(x1)] | = |
|
||||||||
| [c19(x1)] | = |
|
||||||||
| [c4(x1)] | = |
|
||||||||
| [c13(x1)] | = |
|
||||||||
| [c22(x1)] | = |
|
||||||||
| [c7(x1)] | = |
|
||||||||
| [c16(x1)] | = |
|
||||||||
| [c25(x1)] | = |
|
||||||||
| [c2(x1)] | = |
|
||||||||
| [c11(x1)] | = |
|
||||||||
| [c20(x1)] | = |
|
||||||||
| [c5(x1)] | = |
|
||||||||
| [c14(x1)] | = |
|
||||||||
| [c23(x1)] | = |
|
||||||||
| [c8(x1)] | = |
|
||||||||
| [c17(x1)] | = |
|
||||||||
| [c26(x1)] | = |
|
||||||||
| [b0(x1)] | = |
|
||||||||
| [b9(x1)] | = |
|
||||||||
| [b18(x1)] | = |
|
||||||||
| [b3(x1)] | = |
|
||||||||
| [b12(x1)] | = |
|
||||||||
| [b21(x1)] | = |
|
||||||||
| [b6(x1)] | = |
|
||||||||
| [b15(x1)] | = |
|
||||||||
| [b24(x1)] | = |
|
||||||||
| [b1(x1)] | = |
|
||||||||
| [b10(x1)] | = |
|
||||||||
| [b19(x1)] | = |
|
||||||||
| [b4(x1)] | = |
|
||||||||
| [b13(x1)] | = |
|
||||||||
| [b22(x1)] | = |
|
||||||||
| [b7(x1)] | = |
|
||||||||
| [b25(x1)] | = |
|
||||||||
| [b2(x1)] | = |
|
||||||||
| [b11(x1)] | = |
|
||||||||
| [b20(x1)] | = |
|
||||||||
| [b5(x1)] | = |
|
||||||||
| [b14(x1)] | = |
|
||||||||
| [b23(x1)] | = |
|
||||||||
| [b8(x1)] | = |
|
||||||||
| [b17(x1)] | = |
|
||||||||
| [b26(x1)] | = |
|
||||||||
| [a0(x1)] | = |
|
||||||||
| [a9(x1)] | = |
|
||||||||
| [a18(x1)] | = |
|
||||||||
| [a3(x1)] | = |
|
||||||||
| [a12(x1)] | = |
|
||||||||
| [a21(x1)] | = |
|
||||||||
| [a6(x1)] | = |
|
||||||||
| [a15(x1)] | = |
|
||||||||
| [a24(x1)] | = |
|
||||||||
| [a1(x1)] | = |
|
||||||||
| [a10(x1)] | = |
|
||||||||
| [a19(x1)] | = |
|
||||||||
| [a4(x1)] | = |
|
||||||||
| [a13(x1)] | = |
|
||||||||
| [a22(x1)] | = |
|
||||||||
| [a7(x1)] | = |
|
||||||||
| [a16(x1)] | = |
|
||||||||
| [a25(x1)] | = |
|
||||||||
| [a2(x1)] | = |
|
||||||||
| [a11(x1)] | = |
|
||||||||
| [a20(x1)] | = |
|
||||||||
| [a5(x1)] | = |
|
||||||||
| [a14(x1)] | = |
|
||||||||
| [a23(x1)] | = |
|
||||||||
| [a8(x1)] | = |
|
||||||||
| [a17(x1)] | = |
|
||||||||
| [a26(x1)] | = |
|
| c4(b12(c10(a3(a11(a8(x1)))))) | → | b4(b13(c13(a12(a11(a8(x1)))))) | (5225) |
| c4(b12(c10(b3(a10(a5(x1)))))) | → | b4(b13(c13(b12(a10(a5(x1)))))) | (5234) |
| c4(b12(c10(c3(a9(a2(x1)))))) | → | b4(b13(c13(c12(a9(a2(x1)))))) | (5243) |
| c4(b12(c10(a3(b11(a7(x1)))))) | → | b4(b13(c13(a12(b11(a7(x1)))))) | (5252) |
| c4(b12(c10(b3(b10(a4(x1)))))) | → | b4(b13(c13(b12(b10(a4(x1)))))) | (5261) |
| c4(b12(c10(c3(b9(a1(x1)))))) | → | b4(b13(c13(c12(b9(a1(x1)))))) | (5270) |
| c4(b12(c10(a3(c11(a6(x1)))))) | → | b4(b13(c13(a12(c11(a6(x1)))))) | (5279) |
| c4(b12(c10(b3(c10(a3(x1)))))) | → | b4(b13(c13(b12(c10(a3(x1)))))) | (5288) |
| c4(b12(c10(c3(c9(a0(x1)))))) | → | b4(b13(c13(c12(c9(a0(x1)))))) | (5297) |
| c4(b12(c10(a3(a11(b8(x1)))))) | → | b4(b13(c13(a12(a11(b8(x1)))))) | (5306) |
| c4(b12(c10(b3(a10(b5(x1)))))) | → | b4(b13(c13(b12(a10(b5(x1)))))) | (5315) |
| c4(b12(c10(c3(a9(b2(x1)))))) | → | b4(b13(c13(c12(a9(b2(x1)))))) | (5324) |
| c4(b12(c10(a3(b11(b7(x1)))))) | → | b4(b13(c13(a12(b11(b7(x1)))))) | (5333) |
| c4(b12(c10(b3(b10(b4(x1)))))) | → | b4(b13(c13(b12(b10(b4(x1)))))) | (5342) |
| c4(b12(c10(c3(b9(b1(x1)))))) | → | b4(b13(c13(c12(b9(b1(x1)))))) | (5351) |
| c4(b12(c10(a3(c11(b6(x1)))))) | → | b4(b13(c13(a12(c11(b6(x1)))))) | (5360) |
| c4(b12(c10(b3(c10(b3(x1)))))) | → | b4(b13(c13(b12(c10(b3(x1)))))) | (5369) |
| c4(b12(c10(c3(c9(b0(x1)))))) | → | b4(b13(c13(c12(c9(b0(x1)))))) | (5378) |
| c4(b12(c10(a3(a11(c8(x1)))))) | → | b4(b13(c13(a12(a11(c8(x1)))))) | (5387) |
| c4(b12(c10(b3(a10(c5(x1)))))) | → | b4(b13(c13(b12(a10(c5(x1)))))) | (5396) |
| c4(b12(c10(c3(a9(c2(x1)))))) | → | b4(b13(c13(c12(a9(c2(x1)))))) | (5405) |
| c4(b12(c10(a3(b11(c7(x1)))))) | → | b4(b13(c13(a12(b11(c7(x1)))))) | (5414) |
| c4(b12(c10(b3(b10(c4(x1)))))) | → | b4(b13(c13(b12(b10(c4(x1)))))) | (5423) |
| c4(b12(c10(c3(b9(c1(x1)))))) | → | b4(b13(c13(c12(b9(c1(x1)))))) | (5432) |
| c4(b12(c10(a3(c11(c6(x1)))))) | → | b4(b13(c13(a12(c11(c6(x1)))))) | (5441) |
| c4(b12(c10(b3(c10(c3(x1)))))) | → | b4(b13(c13(b12(c10(c3(x1)))))) | (5450) |
| c4(b12(c10(c3(c9(c0(x1)))))) | → | b4(b13(c13(c12(c9(c0(x1)))))) | (5459) |
| [c0(x1)] | = |
x1 +
|
||||
| [c9(x1)] | = |
x1 +
|
||||
| [c18(x1)] | = |
x1 +
|
||||
| [c3(x1)] | = |
x1 +
|
||||
| [c12(x1)] | = |
x1 +
|
||||
| [c21(x1)] | = |
x1 +
|
||||
| [c6(x1)] | = |
x1 +
|
||||
| [c15(x1)] | = |
x1 +
|
||||
| [c24(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c10(x1)] | = |
x1 +
|
||||
| [c19(x1)] | = |
x1 +
|
||||
| [c4(x1)] | = |
x1 +
|
||||
| [c13(x1)] | = |
x1 +
|
||||
| [c22(x1)] | = |
x1 +
|
||||
| [c7(x1)] | = |
x1 +
|
||||
| [c16(x1)] | = |
x1 +
|
||||
| [c25(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c11(x1)] | = |
x1 +
|
||||
| [c20(x1)] | = |
x1 +
|
||||
| [c5(x1)] | = |
x1 +
|
||||
| [c14(x1)] | = |
x1 +
|
||||
| [c23(x1)] | = |
x1 +
|
||||
| [c8(x1)] | = |
x1 +
|
||||
| [c17(x1)] | = |
x1 +
|
||||
| [c26(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b9(x1)] | = |
x1 +
|
||||
| [b18(x1)] | = |
x1 +
|
||||
| [b3(x1)] | = |
x1 +
|
||||
| [b12(x1)] | = |
x1 +
|
||||
| [b21(x1)] | = |
x1 +
|
||||
| [b6(x1)] | = |
x1 +
|
||||
| [b15(x1)] | = |
x1 +
|
||||
| [b24(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b10(x1)] | = |
x1 +
|
||||
| [b19(x1)] | = |
x1 +
|
||||
| [b4(x1)] | = |
x1 +
|
||||
| [b13(x1)] | = |
x1 +
|
||||
| [b22(x1)] | = |
x1 +
|
||||
| [b7(x1)] | = |
x1 +
|
||||
| [b25(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b11(x1)] | = |
x1 +
|
||||
| [b20(x1)] | = |
x1 +
|
||||
| [b5(x1)] | = |
x1 +
|
||||
| [b14(x1)] | = |
x1 +
|
||||
| [b23(x1)] | = |
x1 +
|
||||
| [b8(x1)] | = |
x1 +
|
||||
| [b17(x1)] | = |
x1 +
|
||||
| [b26(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a9(x1)] | = |
x1 +
|
||||
| [a18(x1)] | = |
x1 +
|
||||
| [a3(x1)] | = |
x1 +
|
||||
| [a12(x1)] | = |
x1 +
|
||||
| [a21(x1)] | = |
x1 +
|
||||
| [a6(x1)] | = |
x1 +
|
||||
| [a15(x1)] | = |
x1 +
|
||||
| [a24(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
||||
| [a10(x1)] | = |
x1 +
|
||||
| [a19(x1)] | = |
x1 +
|
||||
| [a4(x1)] | = |
x1 +
|
||||
| [a13(x1)] | = |
x1 +
|
||||
| [a22(x1)] | = |
x1 +
|
||||
| [a7(x1)] | = |
x1 +
|
||||
| [a16(x1)] | = |
x1 +
|
||||
| [a25(x1)] | = |
x1 +
|
||||
| [a2(x1)] | = |
x1 +
|
||||
| [a11(x1)] | = |
x1 +
|
||||
| [a20(x1)] | = |
x1 +
|
||||
| [a5(x1)] | = |
x1 +
|
||||
| [a14(x1)] | = |
x1 +
|
||||
| [a23(x1)] | = |
x1 +
|
||||
| [a8(x1)] | = |
x1 +
|
||||
| [a17(x1)] | = |
x1 +
|
||||
| [a26(x1)] | = |
x1 +
|
There are 540 ruless (increase limit for explicit display).
| a17(a23(a25(b26(a26(a26(x1)))))) | → | a26(a17(a23(a25(b26(a26(x1)))))) | (4466) |
| a17(a23(a25(b26(a26(a17(x1)))))) | → | a26(a17(a23(a25(b26(a17(x1)))))) | (4467) |
| a17(a23(a25(b26(a26(a8(x1)))))) | → | a26(a17(a23(a25(b26(a8(x1)))))) | (4468) |
| a17(a23(a25(b26(a17(a23(x1)))))) | → | a26(a17(a23(a25(b17(a23(x1)))))) | (4469) |
| a17(a23(a25(b26(a17(a14(x1)))))) | → | a26(a17(a23(a25(b17(a14(x1)))))) | (4470) |
| a17(a23(a25(b26(a17(a5(x1)))))) | → | a26(a17(a23(a25(b17(a5(x1)))))) | (4471) |
| a17(a23(a25(b17(a23(a25(x1)))))) | → | a26(a17(a23(a16(b23(a25(x1)))))) | (4475) |
| a17(a23(a25(b17(a23(a16(x1)))))) | → | a26(a17(a23(a16(b23(a16(x1)))))) | (4476) |
| a17(a23(a25(b17(a23(a7(x1)))))) | → | a26(a17(a23(a16(b23(a7(x1)))))) | (4477) |
| a16(b23(a25(b26(a26(a26(x1)))))) | → | a25(b17(a23(a25(b26(a26(x1)))))) | (4547) |
| a16(b23(a25(b26(a26(a17(x1)))))) | → | a25(b17(a23(a25(b26(a17(x1)))))) | (4548) |
| a16(b23(a25(b26(a26(a8(x1)))))) | → | a25(b17(a23(a25(b26(a8(x1)))))) | (4549) |
| a16(b23(a25(b26(a17(a23(x1)))))) | → | a25(b17(a23(a25(b17(a23(x1)))))) | (4550) |
| a16(b23(a25(b26(a17(a14(x1)))))) | → | a25(b17(a23(a25(b17(a14(x1)))))) | (4551) |
| a16(b23(a25(b26(a17(a5(x1)))))) | → | a25(b17(a23(a25(b17(a5(x1)))))) | (4552) |
| a16(b23(a25(b17(a23(a25(x1)))))) | → | a25(b17(a23(a16(b23(a25(x1)))))) | (4556) |
| a16(b23(a25(b17(a23(a16(x1)))))) | → | a25(b17(a23(a16(b23(a16(x1)))))) | (4557) |
| a16(b23(a25(b17(a23(a7(x1)))))) | → | a25(b17(a23(a16(b23(a7(x1)))))) | (4558) |
| b17(a23(a25(b26(a26(a26(x1)))))) | → | b26(a17(a23(a25(b26(a26(x1)))))) | (4709) |
| b17(a23(a25(b26(a26(a17(x1)))))) | → | b26(a17(a23(a25(b26(a17(x1)))))) | (4710) |
| b17(a23(a25(b26(a26(a8(x1)))))) | → | b26(a17(a23(a25(b26(a8(x1)))))) | (4711) |
| b17(a23(a25(b26(a17(a23(x1)))))) | → | b26(a17(a23(a25(b17(a23(x1)))))) | (4712) |
| b17(a23(a25(b26(a17(a14(x1)))))) | → | b26(a17(a23(a25(b17(a14(x1)))))) | (4713) |
| b17(a23(a25(b26(a17(a5(x1)))))) | → | b26(a17(a23(a25(b17(a5(x1)))))) | (4714) |
| b17(a23(a25(b17(a23(a25(x1)))))) | → | b26(a17(a23(a16(b23(a25(x1)))))) | (4718) |
| b17(a23(a25(b17(a23(a16(x1)))))) | → | b26(a17(a23(a16(b23(a16(x1)))))) | (4719) |
| b17(a23(a25(b17(a23(a7(x1)))))) | → | b26(a17(a23(a16(b23(a7(x1)))))) | (4720) |
There are no rules in the TRS. Hence, it is terminating.
{b(☐), a(☐)}
We obtain the transformed TRS| b(b(a(a(x1)))) | → | b(a(b(a(x1)))) | (21) |
| a(b(a(a(x1)))) | → | a(a(b(a(x1)))) | (27) |
As carrier we take the set {0,1}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 2):
| [b(x1)] | = | 2x1 + 0 |
| [a(x1)] | = | 2x1 + 1 |
| b0(b1(a1(a0(x1)))) | → | b1(a0(b1(a0(x1)))) | (5789) |
| b0(b1(a1(a1(x1)))) | → | b1(a0(b1(a1(x1)))) | (5790) |
| a0(b1(a1(a0(x1)))) | → | a1(a0(b1(a0(x1)))) | (5791) |
| a0(b1(a1(a1(x1)))) | → | a1(a0(b1(a1(x1)))) | (5792) |
| [b0(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
| b0(b1(a1(a0(x1)))) | → | b1(a0(b1(a0(x1)))) | (5789) |
| b0(b1(a1(a1(x1)))) | → | b1(a0(b1(a1(x1)))) | (5790) |
| [b1(x1)] | = |
|
||||||||
| [a0(x1)] | = |
|
||||||||
| [a1(x1)] | = |
|
| a0(b1(a1(a0(x1)))) | → | a1(a0(b1(a0(x1)))) | (5791) |
| a0(b1(a1(a1(x1)))) | → | a1(a0(b1(a1(x1)))) | (5792) |
There are no rules in the TRS. Hence, it is terminating.