Certification Problem

Input (TPDB SRS_Relative/Waldmann_19/random-208)

The rewrite relation of the following TRS is considered.

c(c(c(x1))) b(a(a(x1))) (1)
a(b(a(x1))) a(b(b(x1))) (2)
a(b(a(x1))) b(c(c(x1))) (3)
a(c(b(x1))) a(a(c(x1))) (4)
c(c(b(x1))) c(c(a(x1))) (5)
a(b(c(x1))) c(a(c(x1))) (6)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Closure Under Flat Contexts

Using the flat contexts

{c(), b(), a()}

We obtain the transformed TRS
c(c(c(c(x1)))) c(b(a(a(x1)))) (7)
c(a(b(a(x1)))) c(a(b(b(x1)))) (8)
c(a(b(a(x1)))) c(b(c(c(x1)))) (9)
c(a(c(b(x1)))) c(a(a(c(x1)))) (10)
c(c(c(b(x1)))) c(c(c(a(x1)))) (11)
c(a(b(c(x1)))) c(c(a(c(x1)))) (12)
b(c(c(c(x1)))) b(b(a(a(x1)))) (13)
b(a(b(a(x1)))) b(a(b(b(x1)))) (14)
b(a(b(a(x1)))) b(b(c(c(x1)))) (15)
b(a(c(b(x1)))) b(a(a(c(x1)))) (16)
b(c(c(b(x1)))) b(c(c(a(x1)))) (17)
b(a(b(c(x1)))) b(c(a(c(x1)))) (18)
a(c(c(c(x1)))) a(b(a(a(x1)))) (19)
a(a(b(a(x1)))) a(a(b(b(x1)))) (20)
a(a(b(a(x1)))) a(b(c(c(x1)))) (21)
a(a(c(b(x1)))) a(a(a(c(x1)))) (22)
a(c(c(b(x1)))) a(c(c(a(x1)))) (23)
a(a(b(c(x1)))) a(c(a(c(x1)))) (24)

1.1 Semantic Labeling

The following interpretations form a model of the rules.

As carrier we take the set {0,1,2}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 3):

[c(x1)] = 3x1 + 0
[b(x1)] = 3x1 + 1
[a(x1)] = 3x1 + 2

We obtain the labeled TRS
c0(c0(c0(c0(x1)))) c1(b2(a2(a0(x1)))) (25)
c0(c0(c0(c1(x1)))) c1(b2(a2(a1(x1)))) (26)
c0(c0(c0(c2(x1)))) c1(b2(a2(a2(x1)))) (27)
b0(c0(c0(c0(x1)))) b1(b2(a2(a0(x1)))) (28)
b0(c0(c0(c1(x1)))) b1(b2(a2(a1(x1)))) (29)
b0(c0(c0(c2(x1)))) b1(b2(a2(a2(x1)))) (30)
a0(c0(c0(c0(x1)))) a1(b2(a2(a0(x1)))) (31)
a0(c0(c0(c1(x1)))) a1(b2(a2(a1(x1)))) (32)
a0(c0(c0(c2(x1)))) a1(b2(a2(a2(x1)))) (33)
c2(a1(b2(a0(x1)))) c2(a1(b1(b0(x1)))) (34)
c2(a1(b2(a1(x1)))) c2(a1(b1(b1(x1)))) (35)
c2(a1(b2(a2(x1)))) c2(a1(b1(b2(x1)))) (36)
b2(a1(b2(a0(x1)))) b2(a1(b1(b0(x1)))) (37)
b2(a1(b2(a1(x1)))) b2(a1(b1(b1(x1)))) (38)
b2(a1(b2(a2(x1)))) b2(a1(b1(b2(x1)))) (39)
a2(a1(b2(a0(x1)))) a2(a1(b1(b0(x1)))) (40)
a2(a1(b2(a1(x1)))) a2(a1(b1(b1(x1)))) (41)
a2(a1(b2(a2(x1)))) a2(a1(b1(b2(x1)))) (42)
c2(a1(b2(a0(x1)))) c1(b0(c0(c0(x1)))) (43)
c2(a1(b2(a1(x1)))) c1(b0(c0(c1(x1)))) (44)
c2(a1(b2(a2(x1)))) c1(b0(c0(c2(x1)))) (45)
b2(a1(b2(a0(x1)))) b1(b0(c0(c0(x1)))) (46)
b2(a1(b2(a1(x1)))) b1(b0(c0(c1(x1)))) (47)
b2(a1(b2(a2(x1)))) b1(b0(c0(c2(x1)))) (48)
a2(a1(b2(a0(x1)))) a1(b0(c0(c0(x1)))) (49)
a2(a1(b2(a1(x1)))) a1(b0(c0(c1(x1)))) (50)
a2(a1(b2(a2(x1)))) a1(b0(c0(c2(x1)))) (51)
c2(a0(c1(b0(x1)))) c2(a2(a0(c0(x1)))) (52)
c2(a0(c1(b1(x1)))) c2(a2(a0(c1(x1)))) (53)
c2(a0(c1(b2(x1)))) c2(a2(a0(c2(x1)))) (54)
b2(a0(c1(b0(x1)))) b2(a2(a0(c0(x1)))) (55)
b2(a0(c1(b1(x1)))) b2(a2(a0(c1(x1)))) (56)
b2(a0(c1(b2(x1)))) b2(a2(a0(c2(x1)))) (57)
a2(a0(c1(b0(x1)))) a2(a2(a0(c0(x1)))) (58)
a2(a0(c1(b1(x1)))) a2(a2(a0(c1(x1)))) (59)
a2(a0(c1(b2(x1)))) a2(a2(a0(c2(x1)))) (60)
c0(c0(c1(b0(x1)))) c0(c0(c2(a0(x1)))) (61)
c0(c0(c1(b1(x1)))) c0(c0(c2(a1(x1)))) (62)
c0(c0(c1(b2(x1)))) c0(c0(c2(a2(x1)))) (63)
b0(c0(c1(b0(x1)))) b0(c0(c2(a0(x1)))) (64)
b0(c0(c1(b1(x1)))) b0(c0(c2(a1(x1)))) (65)
b0(c0(c1(b2(x1)))) b0(c0(c2(a2(x1)))) (66)
a0(c0(c1(b0(x1)))) a0(c0(c2(a0(x1)))) (67)
a0(c0(c1(b1(x1)))) a0(c0(c2(a1(x1)))) (68)
a0(c0(c1(b2(x1)))) a0(c0(c2(a2(x1)))) (69)
c2(a1(b0(c0(x1)))) c0(c2(a0(c0(x1)))) (70)
c2(a1(b0(c1(x1)))) c0(c2(a0(c1(x1)))) (71)
c2(a1(b0(c2(x1)))) c0(c2(a0(c2(x1)))) (72)
b2(a1(b0(c0(x1)))) b0(c2(a0(c0(x1)))) (73)
b2(a1(b0(c1(x1)))) b0(c2(a0(c1(x1)))) (74)
b2(a1(b0(c2(x1)))) b0(c2(a0(c2(x1)))) (75)
a2(a1(b0(c0(x1)))) a0(c2(a0(c0(x1)))) (76)
a2(a1(b0(c1(x1)))) a0(c2(a0(c1(x1)))) (77)
a2(a1(b0(c2(x1)))) a0(c2(a0(c2(x1)))) (78)

1.1.1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
2/3
[c1(x1)] = x1 +
1
[c2(x1)] = x1 +
0
[b0(x1)] = x1 +
1/3
[b1(x1)] = x1 +
0
[b2(x1)] = x1 +
1
[a0(x1)] = x1 +
2/3
[a1(x1)] = x1 +
1
[a2(x1)] = x1 +
0
all of the following rules can be deleted.
b0(c0(c0(c0(x1)))) b1(b2(a2(a0(x1)))) (28)
b0(c0(c0(c1(x1)))) b1(b2(a2(a1(x1)))) (29)
b0(c0(c0(c2(x1)))) b1(b2(a2(a2(x1)))) (30)
c2(a1(b2(a0(x1)))) c2(a1(b1(b0(x1)))) (34)
c2(a1(b2(a1(x1)))) c2(a1(b1(b1(x1)))) (35)
b2(a1(b2(a0(x1)))) b2(a1(b1(b0(x1)))) (37)
b2(a1(b2(a1(x1)))) b2(a1(b1(b1(x1)))) (38)
a2(a1(b2(a0(x1)))) a2(a1(b1(b0(x1)))) (40)
a2(a1(b2(a1(x1)))) a2(a1(b1(b1(x1)))) (41)
b2(a1(b2(a0(x1)))) b1(b0(c0(c0(x1)))) (46)
b2(a1(b2(a1(x1)))) b1(b0(c0(c1(x1)))) (47)
b2(a1(b2(a2(x1)))) b1(b0(c0(c2(x1)))) (48)
c2(a0(c1(b0(x1)))) c2(a2(a0(c0(x1)))) (52)
c2(a0(c1(b2(x1)))) c2(a2(a0(c2(x1)))) (54)
b2(a0(c1(b0(x1)))) b2(a2(a0(c0(x1)))) (55)
b2(a0(c1(b2(x1)))) b2(a2(a0(c2(x1)))) (57)
a2(a0(c1(b0(x1)))) a2(a2(a0(c0(x1)))) (58)
a2(a0(c1(b2(x1)))) a2(a2(a0(c2(x1)))) (60)
c0(c0(c1(b0(x1)))) c0(c0(c2(a0(x1)))) (61)
c0(c0(c1(b2(x1)))) c0(c0(c2(a2(x1)))) (63)
b0(c0(c1(b0(x1)))) b0(c0(c2(a0(x1)))) (64)
b0(c0(c1(b2(x1)))) b0(c0(c2(a2(x1)))) (66)
a0(c0(c1(b0(x1)))) a0(c0(c2(a0(x1)))) (67)
a0(c0(c1(b2(x1)))) a0(c0(c2(a2(x1)))) (69)
b2(a1(b0(c0(x1)))) b0(c2(a0(c0(x1)))) (73)
b2(a1(b0(c1(x1)))) b0(c2(a0(c1(x1)))) (74)
b2(a1(b0(c2(x1)))) b0(c2(a0(c2(x1)))) (75)

1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
c0#(c0(c0(c0(x1)))) b2#(a2(a0(x1))) (79)
c0#(c0(c0(c0(x1)))) a0#(x1) (80)
c0#(c0(c0(c0(x1)))) a2#(a0(x1)) (81)
c0#(c0(c0(c1(x1)))) b2#(a2(a1(x1))) (82)
c0#(c0(c0(c1(x1)))) a2#(a1(x1)) (83)
c0#(c0(c0(c2(x1)))) b2#(a2(a2(x1))) (84)
c0#(c0(c0(c2(x1)))) a2#(x1) (85)
c0#(c0(c0(c2(x1)))) a2#(a2(x1)) (86)
c0#(c0(c1(b1(x1)))) c0#(c0(c2(a1(x1)))) (87)
c0#(c0(c1(b1(x1)))) c0#(c2(a1(x1))) (88)
c0#(c0(c1(b1(x1)))) c2#(a1(x1)) (89)
c2#(a0(c1(b1(x1)))) c2#(a2(a0(c1(x1)))) (90)
c2#(a0(c1(b1(x1)))) a0#(c1(x1)) (91)
c2#(a0(c1(b1(x1)))) a2#(a0(c1(x1))) (92)
c2#(a1(b0(c0(x1)))) c0#(c2(a0(c0(x1)))) (93)
c2#(a1(b0(c0(x1)))) c2#(a0(c0(x1))) (94)
c2#(a1(b0(c0(x1)))) a0#(c0(x1)) (95)
c2#(a1(b0(c1(x1)))) c0#(c2(a0(c1(x1)))) (96)
c2#(a1(b0(c1(x1)))) c2#(a0(c1(x1))) (97)
c2#(a1(b0(c1(x1)))) a0#(c1(x1)) (98)
c2#(a1(b0(c2(x1)))) c0#(c2(a0(c2(x1)))) (99)
c2#(a1(b0(c2(x1)))) c2#(a0(c2(x1))) (100)
c2#(a1(b0(c2(x1)))) a0#(c2(x1)) (101)
c2#(a1(b2(a0(x1)))) c0#(x1) (102)
c2#(a1(b2(a0(x1)))) c0#(c0(x1)) (103)
c2#(a1(b2(a0(x1)))) b0#(c0(c0(x1))) (104)
c2#(a1(b2(a1(x1)))) c0#(c1(x1)) (105)
c2#(a1(b2(a1(x1)))) b0#(c0(c1(x1))) (106)
c2#(a1(b2(a2(x1)))) c0#(c2(x1)) (107)
c2#(a1(b2(a2(x1)))) c2#(x1) (108)
c2#(a1(b2(a2(x1)))) c2#(a1(b1(b2(x1)))) (109)
c2#(a1(b2(a2(x1)))) b0#(c0(c2(x1))) (110)
c2#(a1(b2(a2(x1)))) b2#(x1) (111)
b0#(c0(c1(b1(x1)))) c0#(c2(a1(x1))) (112)
b0#(c0(c1(b1(x1)))) c2#(a1(x1)) (113)
b0#(c0(c1(b1(x1)))) b0#(c0(c2(a1(x1)))) (114)
b2#(a0(c1(b1(x1)))) b2#(a2(a0(c1(x1)))) (115)
b2#(a0(c1(b1(x1)))) a0#(c1(x1)) (116)
b2#(a0(c1(b1(x1)))) a2#(a0(c1(x1))) (117)
b2#(a1(b2(a2(x1)))) b2#(x1) (118)
b2#(a1(b2(a2(x1)))) b2#(a1(b1(b2(x1)))) (119)
a0#(c0(c0(c0(x1)))) b2#(a2(a0(x1))) (120)
a0#(c0(c0(c0(x1)))) a0#(x1) (121)
a0#(c0(c0(c0(x1)))) a2#(a0(x1)) (122)
a0#(c0(c0(c1(x1)))) b2#(a2(a1(x1))) (123)
a0#(c0(c0(c1(x1)))) a2#(a1(x1)) (124)
a0#(c0(c0(c2(x1)))) b2#(a2(a2(x1))) (125)
a0#(c0(c0(c2(x1)))) a2#(x1) (126)
a0#(c0(c0(c2(x1)))) a2#(a2(x1)) (127)
a0#(c0(c1(b1(x1)))) c0#(c2(a1(x1))) (128)
a0#(c0(c1(b1(x1)))) c2#(a1(x1)) (129)
a0#(c0(c1(b1(x1)))) a0#(c0(c2(a1(x1)))) (130)
a2#(a0(c1(b1(x1)))) a0#(c1(x1)) (131)
a2#(a0(c1(b1(x1)))) a2#(a0(c1(x1))) (132)
a2#(a0(c1(b1(x1)))) a2#(a2(a0(c1(x1)))) (133)
a2#(a1(b0(c0(x1)))) c2#(a0(c0(x1))) (134)
a2#(a1(b0(c0(x1)))) a0#(c0(x1)) (135)
a2#(a1(b0(c0(x1)))) a0#(c2(a0(c0(x1)))) (136)
a2#(a1(b0(c1(x1)))) c2#(a0(c1(x1))) (137)
a2#(a1(b0(c1(x1)))) a0#(c1(x1)) (138)
a2#(a1(b0(c1(x1)))) a0#(c2(a0(c1(x1)))) (139)
a2#(a1(b0(c2(x1)))) c2#(a0(c2(x1))) (140)
a2#(a1(b0(c2(x1)))) a0#(c2(x1)) (141)
a2#(a1(b0(c2(x1)))) a0#(c2(a0(c2(x1)))) (142)
a2#(a1(b2(a0(x1)))) c0#(x1) (143)
a2#(a1(b2(a0(x1)))) c0#(c0(x1)) (144)
a2#(a1(b2(a0(x1)))) b0#(c0(c0(x1))) (145)
a2#(a1(b2(a1(x1)))) c0#(c1(x1)) (146)
a2#(a1(b2(a1(x1)))) b0#(c0(c1(x1))) (147)
a2#(a1(b2(a2(x1)))) c0#(c2(x1)) (148)
a2#(a1(b2(a2(x1)))) c2#(x1) (149)
a2#(a1(b2(a2(x1)))) b0#(c0(c2(x1))) (150)
a2#(a1(b2(a2(x1)))) b2#(x1) (151)
a2#(a1(b2(a2(x1)))) a2#(a1(b1(b2(x1)))) (152)

1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
3
[c1(x1)] = x1 +
3
[c2(x1)] = x1 +
3
[b0(x1)] = x1 +
3
[b1(x1)] = x1 +
3
[b2(x1)] = x1 +
3
[a0(x1)] = x1 +
3
[a1(x1)] = x1 +
3
[a2(x1)] = x1 +
3
[c0#(x1)] = x1 +
0
[c2#(x1)] = x1 +
3
[b0#(x1)] = x1 +
0
[b2#(x1)] = x1 +
2
[a0#(x1)] = x1 +
3
[a2#(x1)] = x1 +
4
together with the usable rules
c0(c0(c0(c0(x1)))) c1(b2(a2(a0(x1)))) (25)
c0(c0(c0(c1(x1)))) c1(b2(a2(a1(x1)))) (26)
c0(c0(c0(c2(x1)))) c1(b2(a2(a2(x1)))) (27)
a0(c0(c0(c0(x1)))) a1(b2(a2(a0(x1)))) (31)
a0(c0(c0(c1(x1)))) a1(b2(a2(a1(x1)))) (32)
a0(c0(c0(c2(x1)))) a1(b2(a2(a2(x1)))) (33)
c2(a1(b2(a2(x1)))) c2(a1(b1(b2(x1)))) (36)
b2(a1(b2(a2(x1)))) b2(a1(b1(b2(x1)))) (39)
a2(a1(b2(a2(x1)))) a2(a1(b1(b2(x1)))) (42)
c2(a1(b2(a0(x1)))) c1(b0(c0(c0(x1)))) (43)
c2(a1(b2(a1(x1)))) c1(b0(c0(c1(x1)))) (44)
c2(a1(b2(a2(x1)))) c1(b0(c0(c2(x1)))) (45)
a2(a1(b2(a0(x1)))) a1(b0(c0(c0(x1)))) (49)
a2(a1(b2(a1(x1)))) a1(b0(c0(c1(x1)))) (50)
a2(a1(b2(a2(x1)))) a1(b0(c0(c2(x1)))) (51)
c2(a0(c1(b1(x1)))) c2(a2(a0(c1(x1)))) (53)
b2(a0(c1(b1(x1)))) b2(a2(a0(c1(x1)))) (56)
a2(a0(c1(b1(x1)))) a2(a2(a0(c1(x1)))) (59)
c0(c0(c1(b1(x1)))) c0(c0(c2(a1(x1)))) (62)
b0(c0(c1(b1(x1)))) b0(c0(c2(a1(x1)))) (65)
a0(c0(c1(b1(x1)))) a0(c0(c2(a1(x1)))) (68)
c2(a1(b0(c0(x1)))) c0(c2(a0(c0(x1)))) (70)
c2(a1(b0(c1(x1)))) c0(c2(a0(c1(x1)))) (71)
c2(a1(b0(c2(x1)))) c0(c2(a0(c2(x1)))) (72)
a2(a1(b0(c0(x1)))) a0(c2(a0(c0(x1)))) (76)
a2(a1(b0(c1(x1)))) a0(c2(a0(c1(x1)))) (77)
a2(a1(b0(c2(x1)))) a0(c2(a0(c2(x1)))) (78)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
c0#(c0(c0(c0(x1)))) b2#(a2(a0(x1))) (79)
c0#(c0(c0(c0(x1)))) a0#(x1) (80)
c0#(c0(c0(c0(x1)))) a2#(a0(x1)) (81)
c0#(c0(c0(c1(x1)))) b2#(a2(a1(x1))) (82)
c0#(c0(c0(c1(x1)))) a2#(a1(x1)) (83)
c0#(c0(c0(c2(x1)))) b2#(a2(a2(x1))) (84)
c0#(c0(c0(c2(x1)))) a2#(x1) (85)
c0#(c0(c0(c2(x1)))) a2#(a2(x1)) (86)
c0#(c0(c1(b1(x1)))) c0#(c2(a1(x1))) (88)
c0#(c0(c1(b1(x1)))) c2#(a1(x1)) (89)
c2#(a0(c1(b1(x1)))) a0#(c1(x1)) (91)
c2#(a0(c1(b1(x1)))) a2#(a0(c1(x1))) (92)
c2#(a1(b0(c0(x1)))) c0#(c2(a0(c0(x1)))) (93)
c2#(a1(b0(c0(x1)))) c2#(a0(c0(x1))) (94)
c2#(a1(b0(c0(x1)))) a0#(c0(x1)) (95)
c2#(a1(b0(c1(x1)))) c0#(c2(a0(c1(x1)))) (96)
c2#(a1(b0(c1(x1)))) c2#(a0(c1(x1))) (97)
c2#(a1(b0(c1(x1)))) a0#(c1(x1)) (98)
c2#(a1(b0(c2(x1)))) c0#(c2(a0(c2(x1)))) (99)
c2#(a1(b0(c2(x1)))) c2#(a0(c2(x1))) (100)
c2#(a1(b0(c2(x1)))) a0#(c2(x1)) (101)
c2#(a1(b2(a0(x1)))) c0#(x1) (102)
c2#(a1(b2(a0(x1)))) c0#(c0(x1)) (103)
c2#(a1(b2(a0(x1)))) b0#(c0(c0(x1))) (104)
c2#(a1(b2(a1(x1)))) c0#(c1(x1)) (105)
c2#(a1(b2(a1(x1)))) b0#(c0(c1(x1))) (106)
c2#(a1(b2(a2(x1)))) c0#(c2(x1)) (107)
c2#(a1(b2(a2(x1)))) c2#(x1) (108)
c2#(a1(b2(a2(x1)))) b0#(c0(c2(x1))) (110)
c2#(a1(b2(a2(x1)))) b2#(x1) (111)
b0#(c0(c1(b1(x1)))) c0#(c2(a1(x1))) (112)
b0#(c0(c1(b1(x1)))) c2#(a1(x1)) (113)
b2#(a0(c1(b1(x1)))) a0#(c1(x1)) (116)
b2#(a0(c1(b1(x1)))) a2#(a0(c1(x1))) (117)
b2#(a1(b2(a2(x1)))) b2#(x1) (118)
a0#(c0(c0(c0(x1)))) b2#(a2(a0(x1))) (120)
a0#(c0(c0(c0(x1)))) a0#(x1) (121)
a0#(c0(c0(c0(x1)))) a2#(a0(x1)) (122)
a0#(c0(c0(c1(x1)))) b2#(a2(a1(x1))) (123)
a0#(c0(c0(c1(x1)))) a2#(a1(x1)) (124)
a0#(c0(c0(c2(x1)))) b2#(a2(a2(x1))) (125)
a0#(c0(c0(c2(x1)))) a2#(x1) (126)
a0#(c0(c0(c2(x1)))) a2#(a2(x1)) (127)
a0#(c0(c1(b1(x1)))) c0#(c2(a1(x1))) (128)
a0#(c0(c1(b1(x1)))) c2#(a1(x1)) (129)
a2#(a0(c1(b1(x1)))) a0#(c1(x1)) (131)
a2#(a0(c1(b1(x1)))) a2#(a0(c1(x1))) (132)
a2#(a1(b0(c0(x1)))) c2#(a0(c0(x1))) (134)
a2#(a1(b0(c0(x1)))) a0#(c0(x1)) (135)
a2#(a1(b0(c0(x1)))) a0#(c2(a0(c0(x1)))) (136)
a2#(a1(b0(c1(x1)))) c2#(a0(c1(x1))) (137)
a2#(a1(b0(c1(x1)))) a0#(c1(x1)) (138)
a2#(a1(b0(c1(x1)))) a0#(c2(a0(c1(x1)))) (139)
a2#(a1(b0(c2(x1)))) c2#(a0(c2(x1))) (140)
a2#(a1(b0(c2(x1)))) a0#(c2(x1)) (141)
a2#(a1(b0(c2(x1)))) a0#(c2(a0(c2(x1)))) (142)
a2#(a1(b2(a0(x1)))) c0#(x1) (143)
a2#(a1(b2(a0(x1)))) c0#(c0(x1)) (144)
a2#(a1(b2(a0(x1)))) b0#(c0(c0(x1))) (145)
a2#(a1(b2(a1(x1)))) c0#(c1(x1)) (146)
a2#(a1(b2(a1(x1)))) b0#(c0(c1(x1))) (147)
a2#(a1(b2(a2(x1)))) c0#(c2(x1)) (148)
a2#(a1(b2(a2(x1)))) c2#(x1) (149)
a2#(a1(b2(a2(x1)))) b0#(c0(c2(x1))) (150)
a2#(a1(b2(a2(x1)))) b2#(x1) (151)
and no rules could be deleted.

1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 6 components.