The relative rewrite relation R/S is considered where R is the following TRS
| a(c(b(x1))) | → | b(b(a(x1))) | (1) |
| a(c(b(x1))) | → | a(c(c(x1))) | (2) |
| b(b(b(x1))) | → | a(a(c(x1))) | (3) |
| c(a(c(x1))) | → | b(b(b(x1))) | (4) |
and S is the following TRS.
| b(a(b(x1))) | → | b(a(b(x1))) | (5) |
| b(a(a(x1))) | → | b(a(b(x1))) | (6) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRS| c(a(c(b(x1)))) | → | c(b(b(a(x1)))) | (7) |
| c(a(c(b(x1)))) | → | c(a(c(c(x1)))) | (8) |
| c(b(b(b(x1)))) | → | c(a(a(c(x1)))) | (9) |
| c(c(a(c(x1)))) | → | c(b(b(b(x1)))) | (10) |
| c(b(a(a(x1)))) | → | c(b(a(b(x1)))) | (11) |
| b(a(c(b(x1)))) | → | b(b(b(a(x1)))) | (12) |
| b(a(c(b(x1)))) | → | b(a(c(c(x1)))) | (13) |
| b(b(b(b(x1)))) | → | b(a(a(c(x1)))) | (14) |
| b(c(a(c(x1)))) | → | b(b(b(b(x1)))) | (15) |
| b(b(a(a(x1)))) | → | b(b(a(b(x1)))) | (16) |
| a(a(c(b(x1)))) | → | a(b(b(a(x1)))) | (17) |
| a(a(c(b(x1)))) | → | a(a(c(c(x1)))) | (18) |
| a(b(b(b(x1)))) | → | a(a(a(c(x1)))) | (19) |
| a(c(a(c(x1)))) | → | a(b(b(b(x1)))) | (20) |
| a(b(a(a(x1)))) | → | a(b(a(b(x1)))) | (21) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRS| c(c(a(c(b(x1))))) | → | c(c(b(b(a(x1))))) | (22) |
| c(c(a(c(b(x1))))) | → | c(c(a(c(c(x1))))) | (23) |
| c(c(b(b(b(x1))))) | → | c(c(a(a(c(x1))))) | (24) |
| c(c(c(a(c(x1))))) | → | c(c(b(b(b(x1))))) | (25) |
| c(c(b(a(a(x1))))) | → | c(c(b(a(b(x1))))) | (26) |
| c(b(a(c(b(x1))))) | → | c(b(b(b(a(x1))))) | (27) |
| c(b(a(c(b(x1))))) | → | c(b(a(c(c(x1))))) | (28) |
| c(b(b(b(b(x1))))) | → | c(b(a(a(c(x1))))) | (29) |
| c(b(c(a(c(x1))))) | → | c(b(b(b(b(x1))))) | (30) |
| c(b(b(a(a(x1))))) | → | c(b(b(a(b(x1))))) | (31) |
| c(a(a(c(b(x1))))) | → | c(a(b(b(a(x1))))) | (32) |
| c(a(a(c(b(x1))))) | → | c(a(a(c(c(x1))))) | (33) |
| c(a(b(b(b(x1))))) | → | c(a(a(a(c(x1))))) | (34) |
| c(a(c(a(c(x1))))) | → | c(a(b(b(b(x1))))) | (35) |
| c(a(b(a(a(x1))))) | → | c(a(b(a(b(x1))))) | (36) |
| b(c(a(c(b(x1))))) | → | b(c(b(b(a(x1))))) | (37) |
| b(c(a(c(b(x1))))) | → | b(c(a(c(c(x1))))) | (38) |
| b(c(b(b(b(x1))))) | → | b(c(a(a(c(x1))))) | (39) |
| b(c(c(a(c(x1))))) | → | b(c(b(b(b(x1))))) | (40) |
| b(c(b(a(a(x1))))) | → | b(c(b(a(b(x1))))) | (41) |
| b(b(a(c(b(x1))))) | → | b(b(b(b(a(x1))))) | (42) |
| b(b(a(c(b(x1))))) | → | b(b(a(c(c(x1))))) | (43) |
| b(b(b(b(b(x1))))) | → | b(b(a(a(c(x1))))) | (44) |
| b(b(c(a(c(x1))))) | → | b(b(b(b(b(x1))))) | (45) |
| b(b(b(a(a(x1))))) | → | b(b(b(a(b(x1))))) | (46) |
| b(a(a(c(b(x1))))) | → | b(a(b(b(a(x1))))) | (47) |
| b(a(a(c(b(x1))))) | → | b(a(a(c(c(x1))))) | (48) |
| b(a(b(b(b(x1))))) | → | b(a(a(a(c(x1))))) | (49) |
| b(a(c(a(c(x1))))) | → | b(a(b(b(b(x1))))) | (50) |
| b(a(b(a(a(x1))))) | → | b(a(b(a(b(x1))))) | (51) |
| a(c(a(c(b(x1))))) | → | a(c(b(b(a(x1))))) | (52) |
| a(c(a(c(b(x1))))) | → | a(c(a(c(c(x1))))) | (53) |
| a(c(b(b(b(x1))))) | → | a(c(a(a(c(x1))))) | (54) |
| a(c(c(a(c(x1))))) | → | a(c(b(b(b(x1))))) | (55) |
| a(c(b(a(a(x1))))) | → | a(c(b(a(b(x1))))) | (56) |
| a(b(a(c(b(x1))))) | → | a(b(b(b(a(x1))))) | (57) |
| a(b(a(c(b(x1))))) | → | a(b(a(c(c(x1))))) | (58) |
| a(b(b(b(b(x1))))) | → | a(b(a(a(c(x1))))) | (59) |
| a(b(c(a(c(x1))))) | → | a(b(b(b(b(x1))))) | (60) |
| a(b(b(a(a(x1))))) | → | a(b(b(a(b(x1))))) | (61) |
| a(a(a(c(b(x1))))) | → | a(a(b(b(a(x1))))) | (62) |
| a(a(a(c(b(x1))))) | → | a(a(a(c(c(x1))))) | (63) |
| a(a(b(b(b(x1))))) | → | a(a(a(a(c(x1))))) | (64) |
| a(a(c(a(c(x1))))) | → | a(a(b(b(b(x1))))) | (65) |
| a(a(b(a(a(x1))))) | → | a(a(b(a(b(x1))))) | (66) |
{c(☐), b(☐), a(☐)}
We obtain the transformed TRSThere are 135 ruless (increase limit for explicit display).
As carrier we take the set {0,...,26}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 27):
| [c(x1)] | = | 3x1 + 0 |
| [b(x1)] | = | 3x1 + 1 |
| [a(x1)] | = | 3x1 + 2 |
There are 3645 ruless (increase limit for explicit display).
| [c0(x1)] | = |
x1 +
|
||||
| [c9(x1)] | = |
x1 +
|
||||
| [c18(x1)] | = |
x1 +
|
||||
| [c3(x1)] | = |
x1 +
|
||||
| [c12(x1)] | = |
x1 +
|
||||
| [c21(x1)] | = |
x1 +
|
||||
| [c6(x1)] | = |
x1 +
|
||||
| [c15(x1)] | = |
x1 +
|
||||
| [c24(x1)] | = |
x1 +
|
||||
| [c1(x1)] | = |
x1 +
|
||||
| [c10(x1)] | = |
x1 +
|
||||
| [c19(x1)] | = |
x1 +
|
||||
| [c4(x1)] | = |
x1 +
|
||||
| [c13(x1)] | = |
x1 +
|
||||
| [c22(x1)] | = |
x1 +
|
||||
| [c7(x1)] | = |
x1 +
|
||||
| [c16(x1)] | = |
x1 +
|
||||
| [c25(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c11(x1)] | = |
x1 +
|
||||
| [c20(x1)] | = |
x1 +
|
||||
| [c5(x1)] | = |
x1 +
|
||||
| [c14(x1)] | = |
x1 +
|
||||
| [c23(x1)] | = |
x1 +
|
||||
| [c8(x1)] | = |
x1 +
|
||||
| [c17(x1)] | = |
x1 +
|
||||
| [c26(x1)] | = |
x1 +
|
||||
| [b0(x1)] | = |
x1 +
|
||||
| [b9(x1)] | = |
x1 +
|
||||
| [b18(x1)] | = |
x1 +
|
||||
| [b3(x1)] | = |
x1 +
|
||||
| [b12(x1)] | = |
x1 +
|
||||
| [b21(x1)] | = |
x1 +
|
||||
| [b6(x1)] | = |
x1 +
|
||||
| [b15(x1)] | = |
x1 +
|
||||
| [b24(x1)] | = |
x1 +
|
||||
| [b1(x1)] | = |
x1 +
|
||||
| [b10(x1)] | = |
x1 +
|
||||
| [b19(x1)] | = |
x1 +
|
||||
| [b4(x1)] | = |
x1 +
|
||||
| [b13(x1)] | = |
x1 +
|
||||
| [b22(x1)] | = |
x1 +
|
||||
| [b7(x1)] | = |
x1 +
|
||||
| [b16(x1)] | = |
x1 +
|
||||
| [b25(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b11(x1)] | = |
x1 +
|
||||
| [b20(x1)] | = |
x1 +
|
||||
| [b5(x1)] | = |
x1 +
|
||||
| [b14(x1)] | = |
x1 +
|
||||
| [b23(x1)] | = |
x1 +
|
||||
| [b8(x1)] | = |
x1 +
|
||||
| [b17(x1)] | = |
x1 +
|
||||
| [b26(x1)] | = |
x1 +
|
||||
| [a0(x1)] | = |
x1 +
|
||||
| [a9(x1)] | = |
x1 +
|
||||
| [a18(x1)] | = |
x1 +
|
||||
| [a3(x1)] | = |
x1 +
|
||||
| [a12(x1)] | = |
x1 +
|
||||
| [a21(x1)] | = |
x1 +
|
||||
| [a6(x1)] | = |
x1 +
|
||||
| [a15(x1)] | = |
x1 +
|
||||
| [a24(x1)] | = |
x1 +
|
||||
| [a1(x1)] | = |
x1 +
|
||||
| [a10(x1)] | = |
x1 +
|
||||
| [a19(x1)] | = |
x1 +
|
||||
| [a4(x1)] | = |
x1 +
|
||||
| [a13(x1)] | = |
x1 +
|
||||
| [a22(x1)] | = |
x1 +
|
||||
| [a7(x1)] | = |
x1 +
|
||||
| [a16(x1)] | = |
x1 +
|
||||
| [a25(x1)] | = |
x1 +
|
||||
| [a2(x1)] | = |
x1 +
|
||||
| [a11(x1)] | = |
x1 +
|
||||
| [a20(x1)] | = |
x1 +
|
||||
| [a5(x1)] | = |
x1 +
|
||||
| [a14(x1)] | = |
x1 +
|
||||
| [a23(x1)] | = |
x1 +
|
||||
| [a8(x1)] | = |
x1 +
|
||||
| [a17(x1)] | = |
x1 +
|
||||
| [a26(x1)] | = |
x1 +
|
There are 3429 ruless (increase limit for explicit display).
| [c9(x1)] | = |
|
||||||||
| [c18(x1)] | = |
|
||||||||
| [c12(x1)] | = |
|
||||||||
| [c21(x1)] | = |
|
||||||||
| [c6(x1)] | = |
|
||||||||
| [c15(x1)] | = |
|
||||||||
| [c24(x1)] | = |
|
||||||||
| [c10(x1)] | = |
|
||||||||
| [c19(x1)] | = |
|
||||||||
| [c13(x1)] | = |
|
||||||||
| [c22(x1)] | = |
|
||||||||
| [c7(x1)] | = |
|
||||||||
| [c16(x1)] | = |
|
||||||||
| [c25(x1)] | = |
|
||||||||
| [c2(x1)] | = |
|
||||||||
| [c11(x1)] | = |
|
||||||||
| [c20(x1)] | = |
|
||||||||
| [c14(x1)] | = |
|
||||||||
| [c23(x1)] | = |
|
||||||||
| [c8(x1)] | = |
|
||||||||
| [c17(x1)] | = |
|
||||||||
| [c26(x1)] | = |
|
||||||||
| [b9(x1)] | = |
|
||||||||
| [b18(x1)] | = |
|
||||||||
| [b12(x1)] | = |
|
||||||||
| [b21(x1)] | = |
|
||||||||
| [b6(x1)] | = |
|
||||||||
| [b15(x1)] | = |
|
||||||||
| [b24(x1)] | = |
|
||||||||
| [b10(x1)] | = |
|
||||||||
| [b19(x1)] | = |
|
||||||||
| [b4(x1)] | = |
|
||||||||
| [b13(x1)] | = |
|
||||||||
| [b22(x1)] | = |
|
||||||||
| [b7(x1)] | = |
|
||||||||
| [b16(x1)] | = |
|
||||||||
| [b25(x1)] | = |
|
||||||||
| [b2(x1)] | = |
|
||||||||
| [b11(x1)] | = |
|
||||||||
| [b20(x1)] | = |
|
||||||||
| [b14(x1)] | = |
|
||||||||
| [b23(x1)] | = |
|
||||||||
| [b8(x1)] | = |
|
||||||||
| [b17(x1)] | = |
|
||||||||
| [b26(x1)] | = |
|
||||||||
| [a9(x1)] | = |
|
||||||||
| [a18(x1)] | = |
|
||||||||
| [a12(x1)] | = |
|
||||||||
| [a21(x1)] | = |
|
||||||||
| [a6(x1)] | = |
|
||||||||
| [a15(x1)] | = |
|
||||||||
| [a24(x1)] | = |
|
||||||||
| [a10(x1)] | = |
|
||||||||
| [a19(x1)] | = |
|
||||||||
| [a13(x1)] | = |
|
||||||||
| [a22(x1)] | = |
|
||||||||
| [a7(x1)] | = |
|
||||||||
| [a16(x1)] | = |
|
||||||||
| [a25(x1)] | = |
|
||||||||
| [a2(x1)] | = |
|
||||||||
| [a11(x1)] | = |
|
||||||||
| [a20(x1)] | = |
|
||||||||
| [a14(x1)] | = |
|
||||||||
| [a23(x1)] | = |
|
||||||||
| [a8(x1)] | = |
|
||||||||
| [a17(x1)] | = |
|
||||||||
| [a26(x1)] | = |
|
There are 127 ruless (increase limit for explicit display).
| [c9(x1)] | = |
x1 +
|
||||
| [c18(x1)] | = |
x1 +
|
||||
| [c12(x1)] | = |
x1 +
|
||||
| [c21(x1)] | = |
x1 +
|
||||
| [c6(x1)] | = |
x1 +
|
||||
| [c15(x1)] | = |
x1 +
|
||||
| [c24(x1)] | = |
x1 +
|
||||
| [c10(x1)] | = |
x1 +
|
||||
| [c19(x1)] | = |
x1 +
|
||||
| [c13(x1)] | = |
x1 +
|
||||
| [c22(x1)] | = |
x1 +
|
||||
| [c7(x1)] | = |
x1 +
|
||||
| [c16(x1)] | = |
x1 +
|
||||
| [c25(x1)] | = |
x1 +
|
||||
| [c2(x1)] | = |
x1 +
|
||||
| [c11(x1)] | = |
x1 +
|
||||
| [c20(x1)] | = |
x1 +
|
||||
| [c14(x1)] | = |
x1 +
|
||||
| [c23(x1)] | = |
x1 +
|
||||
| [c8(x1)] | = |
x1 +
|
||||
| [c17(x1)] | = |
x1 +
|
||||
| [c26(x1)] | = |
x1 +
|
||||
| [b9(x1)] | = |
x1 +
|
||||
| [b18(x1)] | = |
x1 +
|
||||
| [b12(x1)] | = |
x1 +
|
||||
| [b21(x1)] | = |
x1 +
|
||||
| [b6(x1)] | = |
x1 +
|
||||
| [b15(x1)] | = |
x1 +
|
||||
| [b24(x1)] | = |
x1 +
|
||||
| [b10(x1)] | = |
x1 +
|
||||
| [b19(x1)] | = |
x1 +
|
||||
| [b4(x1)] | = |
x1 +
|
||||
| [b13(x1)] | = |
x1 +
|
||||
| [b22(x1)] | = |
x1 +
|
||||
| [b7(x1)] | = |
x1 +
|
||||
| [b16(x1)] | = |
x1 +
|
||||
| [b25(x1)] | = |
x1 +
|
||||
| [b2(x1)] | = |
x1 +
|
||||
| [b11(x1)] | = |
x1 +
|
||||
| [b20(x1)] | = |
x1 +
|
||||
| [b14(x1)] | = |
x1 +
|
||||
| [b23(x1)] | = |
x1 +
|
||||
| [b8(x1)] | = |
x1 +
|
||||
| [b17(x1)] | = |
x1 +
|
||||
| [b26(x1)] | = |
x1 +
|
||||
| [a9(x1)] | = |
x1 +
|
||||
| [a18(x1)] | = |
x1 +
|
||||
| [a12(x1)] | = |
x1 +
|
||||
| [a21(x1)] | = |
x1 +
|
||||
| [a6(x1)] | = |
x1 +
|
||||
| [a15(x1)] | = |
x1 +
|
||||
| [a24(x1)] | = |
x1 +
|
||||
| [a10(x1)] | = |
x1 +
|
||||
| [a19(x1)] | = |
x1 +
|
||||
| [a13(x1)] | = |
x1 +
|
||||
| [a22(x1)] | = |
x1 +
|
||||
| [a7(x1)] | = |
x1 +
|
||||
| [a16(x1)] | = |
x1 +
|
||||
| [a25(x1)] | = |
x1 +
|
||||
| [a2(x1)] | = |
x1 +
|
||||
| [a11(x1)] | = |
x1 +
|
||||
| [a20(x1)] | = |
x1 +
|
||||
| [a14(x1)] | = |
x1 +
|
||||
| [a23(x1)] | = |
x1 +
|
||||
| [a8(x1)] | = |
x1 +
|
||||
| [a17(x1)] | = |
x1 +
|
||||
| [a26(x1)] | = |
x1 +
|
| a26(a8(a11(a21(c7(b2(x1)))))) | → | a26(a8(a2(a18(c6(c2(x1)))))) | (935) |
| a26(a8(a11(a21(c7(b11(x1)))))) | → | a26(a8(a2(a18(c6(c11(x1)))))) | (936) |
| a20(a6(c11(a21(c7(b2(x1)))))) | → | a20(a6(c2(a18(c6(c2(x1)))))) | (962) |
| a20(a6(c11(a21(c7(b11(x1)))))) | → | a20(a6(c2(a18(c6(c11(x1)))))) | (963) |
| a23(a7(b11(a21(c7(b2(x1)))))) | → | a23(a7(b2(a18(c6(c2(x1)))))) | (989) |
| a23(a7(b11(a21(c7(b11(x1)))))) | → | a23(a7(b2(a18(c6(c11(x1)))))) | (990) |
| a24(c8(a11(a21(c7(b2(x1)))))) | → | a24(c8(a2(a18(c6(c2(x1)))))) | (1016) |
| a24(c8(a11(a21(c7(b11(x1)))))) | → | a24(c8(a2(a18(c6(c11(x1)))))) | (1017) |
| a18(c6(c11(a21(c7(b2(x1)))))) | → | a18(c6(c2(a18(c6(c2(x1)))))) | (1043) |
| a18(c6(c11(a21(c7(b11(x1)))))) | → | a18(c6(c2(a18(c6(c11(x1)))))) | (1044) |
| a21(c7(b11(a21(c7(b2(x1)))))) | → | a21(c7(b2(a18(c6(c2(x1)))))) | (1070) |
| a21(c7(b11(a21(c7(b11(x1)))))) | → | a21(c7(b2(a18(c6(c11(x1)))))) | (1071) |
| a25(b8(a11(a21(c7(b2(x1)))))) | → | a25(b8(a2(a18(c6(c2(x1)))))) | (1097) |
| a25(b8(a11(a21(c7(b11(x1)))))) | → | a25(b8(a2(a18(c6(c11(x1)))))) | (1098) |
| a19(b6(c11(a21(c7(b2(x1)))))) | → | a19(b6(c2(a18(c6(c2(x1)))))) | (1124) |
| a19(b6(c11(a21(c7(b11(x1)))))) | → | a19(b6(c2(a18(c6(c11(x1)))))) | (1125) |
| a22(b7(b11(a21(c7(b2(x1)))))) | → | a22(b7(b2(a18(c6(c2(x1)))))) | (1151) |
| a22(b7(b11(a21(c7(b11(x1)))))) | → | a22(b7(b2(a18(c6(c11(x1)))))) | (1152) |
| c26(a8(a11(a21(c7(b2(x1)))))) | → | c26(a8(a2(a18(c6(c2(x1)))))) | (1178) |
| c26(a8(a11(a21(c7(b11(x1)))))) | → | c26(a8(a2(a18(c6(c11(x1)))))) | (1179) |
| c20(a6(c11(a21(c7(b2(x1)))))) | → | c20(a6(c2(a18(c6(c2(x1)))))) | (1205) |
| c20(a6(c11(a21(c7(b11(x1)))))) | → | c20(a6(c2(a18(c6(c11(x1)))))) | (1206) |
| c23(a7(b11(a21(c7(b2(x1)))))) | → | c23(a7(b2(a18(c6(c2(x1)))))) | (1232) |
| c23(a7(b11(a21(c7(b11(x1)))))) | → | c23(a7(b2(a18(c6(c11(x1)))))) | (1233) |
| c24(c8(a11(a21(c7(b2(x1)))))) | → | c24(c8(a2(a18(c6(c2(x1)))))) | (1259) |
| c24(c8(a11(a21(c7(b11(x1)))))) | → | c24(c8(a2(a18(c6(c11(x1)))))) | (1260) |
| c18(c6(c11(a21(c7(b2(x1)))))) | → | c18(c6(c2(a18(c6(c2(x1)))))) | (1286) |
| c18(c6(c11(a21(c7(b11(x1)))))) | → | c18(c6(c2(a18(c6(c11(x1)))))) | (1287) |
| c21(c7(b11(a21(c7(b2(x1)))))) | → | c21(c7(b2(a18(c6(c2(x1)))))) | (1313) |
| c21(c7(b11(a21(c7(b11(x1)))))) | → | c21(c7(b2(a18(c6(c11(x1)))))) | (1314) |
| c25(b8(a11(a21(c7(b2(x1)))))) | → | c25(b8(a2(a18(c6(c2(x1)))))) | (1340) |
| c25(b8(a11(a21(c7(b11(x1)))))) | → | c25(b8(a2(a18(c6(c11(x1)))))) | (1341) |
| c19(b6(c11(a21(c7(b2(x1)))))) | → | c19(b6(c2(a18(c6(c2(x1)))))) | (1367) |
| c19(b6(c11(a21(c7(b11(x1)))))) | → | c19(b6(c2(a18(c6(c11(x1)))))) | (1368) |
| c22(b7(b11(a21(c7(b2(x1)))))) | → | c22(b7(b2(a18(c6(c2(x1)))))) | (1394) |
| c22(b7(b11(a21(c7(b11(x1)))))) | → | c22(b7(b2(a18(c6(c11(x1)))))) | (1395) |
| b26(a8(a11(a21(c7(b2(x1)))))) | → | b26(a8(a2(a18(c6(c2(x1)))))) | (1421) |
| b26(a8(a11(a21(c7(b11(x1)))))) | → | b26(a8(a2(a18(c6(c11(x1)))))) | (1422) |
| b20(a6(c11(a21(c7(b2(x1)))))) | → | b20(a6(c2(a18(c6(c2(x1)))))) | (1448) |
| b20(a6(c11(a21(c7(b11(x1)))))) | → | b20(a6(c2(a18(c6(c11(x1)))))) | (1449) |
| b23(a7(b11(a21(c7(b2(x1)))))) | → | b23(a7(b2(a18(c6(c2(x1)))))) | (1475) |
| b23(a7(b11(a21(c7(b11(x1)))))) | → | b23(a7(b2(a18(c6(c11(x1)))))) | (1476) |
| b24(c8(a11(a21(c7(b2(x1)))))) | → | b24(c8(a2(a18(c6(c2(x1)))))) | (1502) |
| b24(c8(a11(a21(c7(b11(x1)))))) | → | b24(c8(a2(a18(c6(c11(x1)))))) | (1503) |
| b18(c6(c11(a21(c7(b2(x1)))))) | → | b18(c6(c2(a18(c6(c2(x1)))))) | (1529) |
| b18(c6(c11(a21(c7(b11(x1)))))) | → | b18(c6(c2(a18(c6(c11(x1)))))) | (1530) |
| b21(c7(b11(a21(c7(b2(x1)))))) | → | b21(c7(b2(a18(c6(c2(x1)))))) | (1556) |
| b21(c7(b11(a21(c7(b11(x1)))))) | → | b21(c7(b2(a18(c6(c11(x1)))))) | (1557) |
| b25(b8(a11(a21(c7(b2(x1)))))) | → | b25(b8(a2(a18(c6(c2(x1)))))) | (1583) |
| b25(b8(a11(a21(c7(b11(x1)))))) | → | b25(b8(a2(a18(c6(c11(x1)))))) | (1584) |
| b19(b6(c11(a21(c7(b2(x1)))))) | → | b19(b6(c2(a18(c6(c2(x1)))))) | (1610) |
| b19(b6(c11(a21(c7(b11(x1)))))) | → | b19(b6(c2(a18(c6(c11(x1)))))) | (1611) |
| b22(b7(b11(a21(c7(b2(x1)))))) | → | b22(b7(b2(a18(c6(c2(x1)))))) | (1637) |
| b22(b7(b11(a21(c7(b11(x1)))))) | → | b22(b7(b2(a18(c6(c11(x1)))))) | (1638) |
| a2(a18(c6(c2(a18(c6(x1)))))) | → | a11(a12(c13(b4(b19(b6(x1)))))) | (2426) |
| a2(a18(c6(c11(a12(c13(x1)))))) | → | a11(a12(c13(b13(b13(b13(x1)))))) | (2442) |
| c2(a18(c6(c2(a18(c6(x1)))))) | → | c11(a12(c13(b4(b19(b6(x1)))))) | (2669) |
| c2(a18(c6(c11(a12(c13(x1)))))) | → | c11(a12(c13(b13(b13(b13(x1)))))) | (2685) |
| b2(a18(c6(c2(a18(c6(x1)))))) | → | b11(a12(c13(b4(b19(b6(x1)))))) | (2912) |
| b2(a18(c6(c11(a12(c13(x1)))))) | → | b11(a12(c13(b13(b13(b13(x1)))))) | (2928) |
| b4(b19(b6(c2(a18(c6(x1)))))) | → | b13(b13(b13(b4(b19(b6(x1)))))) | (3101) |
| b4(b19(b6(c11(a12(c13(x1)))))) | → | b13(b13(b13(b13(b13(b13(x1)))))) | (3117) |
| a17(a23(a25(b17(a14(a22(x1)))))) | → | a17(a23(a16(b14(a13(b22(x1)))))) | (3142) |
| a11(a21(c25(b17(a14(a22(x1)))))) | → | a11(a21(c16(b14(a13(b22(x1)))))) | (3169) |
| a14(a22(b25(b17(a14(a22(x1)))))) | → | a14(a22(b16(b14(a13(b22(x1)))))) | (3196) |
| a15(c23(a25(b17(a14(a22(x1)))))) | → | a15(c23(a16(b14(a13(b22(x1)))))) | (3223) |
| a9(c21(c25(b17(a14(a22(x1)))))) | → | a9(c21(c16(b14(a13(b22(x1)))))) | (3250) |
| a12(c22(b25(b17(a14(a22(x1)))))) | → | a12(c22(b16(b14(a13(b22(x1)))))) | (3277) |
| a16(b23(a25(b17(a14(a22(x1)))))) | → | a16(b23(a16(b14(a13(b22(x1)))))) | (3304) |
| a10(b21(c25(b17(a14(a22(x1)))))) | → | a10(b21(c16(b14(a13(b22(x1)))))) | (3331) |
| a13(b22(b25(b17(a14(a22(x1)))))) | → | a13(b22(b16(b14(a13(b22(x1)))))) | (3358) |
| c17(a23(a25(b17(a14(a22(x1)))))) | → | c17(a23(a16(b14(a13(b22(x1)))))) | (3385) |
| c11(a21(c25(b17(a14(a22(x1)))))) | → | c11(a21(c16(b14(a13(b22(x1)))))) | (3412) |
| c14(a22(b25(b17(a14(a22(x1)))))) | → | c14(a22(b16(b14(a13(b22(x1)))))) | (3439) |
| c15(c23(a25(b17(a14(a22(x1)))))) | → | c15(c23(a16(b14(a13(b22(x1)))))) | (3466) |
| c9(c21(c25(b17(a14(a22(x1)))))) | → | c9(c21(c16(b14(a13(b22(x1)))))) | (3493) |
| c12(c22(b25(b17(a14(a22(x1)))))) | → | c12(c22(b16(b14(a13(b22(x1)))))) | (3520) |
| c16(b23(a25(b17(a14(a22(x1)))))) | → | c16(b23(a16(b14(a13(b22(x1)))))) | (3547) |
| c10(b21(c25(b17(a14(a22(x1)))))) | → | c10(b21(c16(b14(a13(b22(x1)))))) | (3574) |
| c13(b22(b25(b17(a14(a22(x1)))))) | → | c13(b22(b16(b14(a13(b22(x1)))))) | (3601) |
| b17(a23(a25(b17(a14(a22(x1)))))) | → | b17(a23(a16(b14(a13(b22(x1)))))) | (3628) |
| b11(a21(c25(b17(a14(a22(x1)))))) | → | b11(a21(c16(b14(a13(b22(x1)))))) | (3655) |
| b14(a22(b25(b17(a14(a22(x1)))))) | → | b14(a22(b16(b14(a13(b22(x1)))))) | (3682) |
| b15(c23(a25(b17(a14(a22(x1)))))) | → | b15(c23(a16(b14(a13(b22(x1)))))) | (3709) |
| b9(c21(c25(b17(a14(a22(x1)))))) | → | b9(c21(c16(b14(a13(b22(x1)))))) | (3736) |
| b12(c22(b25(b17(a14(a22(x1)))))) | → | b12(c22(b16(b14(a13(b22(x1)))))) | (3763) |
| b16(b23(a25(b17(a14(a22(x1)))))) | → | b16(b23(a16(b14(a13(b22(x1)))))) | (3790) |
| b10(b21(c25(b17(a14(a22(x1)))))) | → | b10(b21(c16(b14(a13(b22(x1)))))) | (3817) |
| b13(b22(b25(b17(a14(a22(x1)))))) | → | b13(b22(b16(b14(a13(b22(x1)))))) | (3844) |
There are no rules in the TRS. Hence, it is terminating.