Certification Problem

Input (TPDB SRS_Relative/Waldmann_19/random-77)

The rewrite relation of the following TRS is considered.

b(b(c(x1))) c(a(c(x1))) (1)
a(c(b(x1))) b(c(c(x1))) (2)
b(b(b(x1))) b(c(a(x1))) (3)
b(a(a(x1))) c(c(c(x1))) (4)
a(a(b(x1))) b(a(a(x1))) (5)
c(a(b(x1))) b(b(a(x1))) (6)
b(a(a(x1))) c(c(b(x1))) (7)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by matchbox @ termCOMP 2023)

1 Closure Under Flat Contexts

Using the flat contexts

{c(), b(), a()}

We obtain the transformed TRS
c(b(b(c(x1)))) c(c(a(c(x1)))) (8)
c(a(c(b(x1)))) c(b(c(c(x1)))) (9)
c(b(b(b(x1)))) c(b(c(a(x1)))) (10)
c(b(a(a(x1)))) c(c(c(c(x1)))) (11)
c(a(a(b(x1)))) c(b(a(a(x1)))) (12)
c(c(a(b(x1)))) c(b(b(a(x1)))) (13)
c(b(a(a(x1)))) c(c(c(b(x1)))) (14)
b(b(b(c(x1)))) b(c(a(c(x1)))) (15)
b(a(c(b(x1)))) b(b(c(c(x1)))) (16)
b(b(b(b(x1)))) b(b(c(a(x1)))) (17)
b(b(a(a(x1)))) b(c(c(c(x1)))) (18)
b(a(a(b(x1)))) b(b(a(a(x1)))) (19)
b(c(a(b(x1)))) b(b(b(a(x1)))) (20)
b(b(a(a(x1)))) b(c(c(b(x1)))) (21)
a(b(b(c(x1)))) a(c(a(c(x1)))) (22)
a(a(c(b(x1)))) a(b(c(c(x1)))) (23)
a(b(b(b(x1)))) a(b(c(a(x1)))) (24)
a(b(a(a(x1)))) a(c(c(c(x1)))) (25)
a(a(a(b(x1)))) a(b(a(a(x1)))) (26)
a(c(a(b(x1)))) a(b(b(a(x1)))) (27)
a(b(a(a(x1)))) a(c(c(b(x1)))) (28)

1.1 Semantic Labeling

The following interpretations form a model of the rules.

As carrier we take the set {0,1,2}. Symbols are labeled by the interpretation of their arguments using the interpretations (modulo 3):

[c(x1)] = 3x1 + 0
[b(x1)] = 3x1 + 1
[a(x1)] = 3x1 + 2

We obtain the labeled TRS
b1(b1(b0(c1(x1)))) b0(c2(a0(c1(x1)))) (29)
b1(b1(b0(c0(x1)))) b0(c2(a0(c0(x1)))) (30)
b1(b1(b0(c2(x1)))) b0(c2(a0(c2(x1)))) (31)
c1(b1(b0(c1(x1)))) c0(c2(a0(c1(x1)))) (32)
c1(b1(b0(c0(x1)))) c0(c2(a0(c0(x1)))) (33)
c1(b1(b0(c2(x1)))) c0(c2(a0(c2(x1)))) (34)
a1(b1(b0(c1(x1)))) a0(c2(a0(c1(x1)))) (35)
a1(b1(b0(c0(x1)))) a0(c2(a0(c0(x1)))) (36)
a1(b1(b0(c2(x1)))) a0(c2(a0(c2(x1)))) (37)
b2(a0(c1(b1(x1)))) b1(b0(c0(c1(x1)))) (38)
b2(a0(c1(b0(x1)))) b1(b0(c0(c0(x1)))) (39)
b2(a0(c1(b2(x1)))) b1(b0(c0(c2(x1)))) (40)
c2(a0(c1(b1(x1)))) c1(b0(c0(c1(x1)))) (41)
c2(a0(c1(b0(x1)))) c1(b0(c0(c0(x1)))) (42)
c2(a0(c1(b2(x1)))) c1(b0(c0(c2(x1)))) (43)
a2(a0(c1(b1(x1)))) a1(b0(c0(c1(x1)))) (44)
a2(a0(c1(b0(x1)))) a1(b0(c0(c0(x1)))) (45)
a2(a0(c1(b2(x1)))) a1(b0(c0(c2(x1)))) (46)
b1(b1(b1(b1(x1)))) b1(b0(c2(a1(x1)))) (47)
b1(b1(b1(b0(x1)))) b1(b0(c2(a0(x1)))) (48)
b1(b1(b1(b2(x1)))) b1(b0(c2(a2(x1)))) (49)
c1(b1(b1(b1(x1)))) c1(b0(c2(a1(x1)))) (50)
c1(b1(b1(b0(x1)))) c1(b0(c2(a0(x1)))) (51)
c1(b1(b1(b2(x1)))) c1(b0(c2(a2(x1)))) (52)
a1(b1(b1(b1(x1)))) a1(b0(c2(a1(x1)))) (53)
a1(b1(b1(b0(x1)))) a1(b0(c2(a0(x1)))) (54)
a1(b1(b1(b2(x1)))) a1(b0(c2(a2(x1)))) (55)
b1(b2(a2(a1(x1)))) b0(c0(c0(c1(x1)))) (56)
b1(b2(a2(a0(x1)))) b0(c0(c0(c0(x1)))) (57)
b1(b2(a2(a2(x1)))) b0(c0(c0(c2(x1)))) (58)
c1(b2(a2(a1(x1)))) c0(c0(c0(c1(x1)))) (59)
c1(b2(a2(a0(x1)))) c0(c0(c0(c0(x1)))) (60)
c1(b2(a2(a2(x1)))) c0(c0(c0(c2(x1)))) (61)
a1(b2(a2(a1(x1)))) a0(c0(c0(c1(x1)))) (62)
a1(b2(a2(a0(x1)))) a0(c0(c0(c0(x1)))) (63)
a1(b2(a2(a2(x1)))) a0(c0(c0(c2(x1)))) (64)
b2(a2(a1(b1(x1)))) b1(b2(a2(a1(x1)))) (65)
b2(a2(a1(b0(x1)))) b1(b2(a2(a0(x1)))) (66)
b2(a2(a1(b2(x1)))) b1(b2(a2(a2(x1)))) (67)
c2(a2(a1(b1(x1)))) c1(b2(a2(a1(x1)))) (68)
c2(a2(a1(b0(x1)))) c1(b2(a2(a0(x1)))) (69)
c2(a2(a1(b2(x1)))) c1(b2(a2(a2(x1)))) (70)
a2(a2(a1(b1(x1)))) a1(b2(a2(a1(x1)))) (71)
a2(a2(a1(b0(x1)))) a1(b2(a2(a0(x1)))) (72)
a2(a2(a1(b2(x1)))) a1(b2(a2(a2(x1)))) (73)
b0(c2(a1(b1(x1)))) b1(b1(b2(a1(x1)))) (74)
b0(c2(a1(b0(x1)))) b1(b1(b2(a0(x1)))) (75)
b0(c2(a1(b2(x1)))) b1(b1(b2(a2(x1)))) (76)
c0(c2(a1(b1(x1)))) c1(b1(b2(a1(x1)))) (77)
c0(c2(a1(b0(x1)))) c1(b1(b2(a0(x1)))) (78)
c0(c2(a1(b2(x1)))) c1(b1(b2(a2(x1)))) (79)
a0(c2(a1(b1(x1)))) a1(b1(b2(a1(x1)))) (80)
a0(c2(a1(b0(x1)))) a1(b1(b2(a0(x1)))) (81)
a0(c2(a1(b2(x1)))) a1(b1(b2(a2(x1)))) (82)
b1(b2(a2(a1(x1)))) b0(c0(c1(b1(x1)))) (83)
b1(b2(a2(a0(x1)))) b0(c0(c1(b0(x1)))) (84)
b1(b2(a2(a2(x1)))) b0(c0(c1(b2(x1)))) (85)
c1(b2(a2(a1(x1)))) c0(c0(c1(b1(x1)))) (86)
c1(b2(a2(a0(x1)))) c0(c0(c1(b0(x1)))) (87)
c1(b2(a2(a2(x1)))) c0(c0(c1(b2(x1)))) (88)
a1(b2(a2(a1(x1)))) a0(c0(c1(b1(x1)))) (89)
a1(b2(a2(a0(x1)))) a0(c0(c1(b0(x1)))) (90)
a1(b2(a2(a2(x1)))) a0(c0(c1(b2(x1)))) (91)

1.1.1 Rule Removal

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
0
[c1(x1)] = x1 +
0
[c2(x1)] = x1 +
1
[b0(x1)] = x1 +
1
[b1(x1)] = x1 +
1
[b2(x1)] = x1 +
1
[a0(x1)] = x1 +
1
[a1(x1)] = x1 +
1
[a2(x1)] = x1 +
1
all of the following rules can be deleted.
b2(a0(c1(b1(x1)))) b1(b0(c0(c1(x1)))) (38)
b2(a0(c1(b0(x1)))) b1(b0(c0(c0(x1)))) (39)
c2(a0(c1(b1(x1)))) c1(b0(c0(c1(x1)))) (41)
c2(a0(c1(b0(x1)))) c1(b0(c0(c0(x1)))) (42)
c2(a0(c1(b2(x1)))) c1(b0(c0(c2(x1)))) (43)
a2(a0(c1(b1(x1)))) a1(b0(c0(c1(x1)))) (44)
a2(a0(c1(b0(x1)))) a1(b0(c0(c0(x1)))) (45)
b1(b2(a2(a1(x1)))) b0(c0(c0(c1(x1)))) (56)
b1(b2(a2(a0(x1)))) b0(c0(c0(c0(x1)))) (57)
b1(b2(a2(a2(x1)))) b0(c0(c0(c2(x1)))) (58)
c1(b2(a2(a1(x1)))) c0(c0(c0(c1(x1)))) (59)
c1(b2(a2(a0(x1)))) c0(c0(c0(c0(x1)))) (60)
c1(b2(a2(a2(x1)))) c0(c0(c0(c2(x1)))) (61)
a1(b2(a2(a1(x1)))) a0(c0(c0(c1(x1)))) (62)
a1(b2(a2(a0(x1)))) a0(c0(c0(c0(x1)))) (63)
a1(b2(a2(a2(x1)))) a0(c0(c0(c2(x1)))) (64)
c2(a2(a1(b1(x1)))) c1(b2(a2(a1(x1)))) (68)
c2(a2(a1(b0(x1)))) c1(b2(a2(a0(x1)))) (69)
c2(a2(a1(b2(x1)))) c1(b2(a2(a2(x1)))) (70)
b1(b2(a2(a1(x1)))) b0(c0(c1(b1(x1)))) (83)
b1(b2(a2(a0(x1)))) b0(c0(c1(b0(x1)))) (84)
b1(b2(a2(a2(x1)))) b0(c0(c1(b2(x1)))) (85)
c1(b2(a2(a1(x1)))) c0(c0(c1(b1(x1)))) (86)
c1(b2(a2(a0(x1)))) c0(c0(c1(b0(x1)))) (87)
c1(b2(a2(a2(x1)))) c0(c0(c1(b2(x1)))) (88)
a1(b2(a2(a1(x1)))) a0(c0(c1(b1(x1)))) (89)
a1(b2(a2(a0(x1)))) a0(c0(c1(b0(x1)))) (90)
a1(b2(a2(a2(x1)))) a0(c0(c1(b2(x1)))) (91)

1.1.1.1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
c1(b0(b1(b1(x1)))) c1(a0(c2(b0(x1)))) (92)
c0(b0(b1(b1(x1)))) c0(a0(c2(b0(x1)))) (93)
c2(b0(b1(b1(x1)))) c2(a0(c2(b0(x1)))) (94)
c1(b0(b1(c1(x1)))) c1(a0(c2(c0(x1)))) (95)
c0(b0(b1(c1(x1)))) c0(a0(c2(c0(x1)))) (96)
c2(b0(b1(c1(x1)))) c2(a0(c2(c0(x1)))) (97)
c1(b0(b1(a1(x1)))) c1(a0(c2(a0(x1)))) (98)
c0(b0(b1(a1(x1)))) c0(a0(c2(a0(x1)))) (99)
c2(b0(b1(a1(x1)))) c2(a0(c2(a0(x1)))) (100)
b2(c1(a0(b2(x1)))) c2(c0(b0(b1(x1)))) (101)
b2(c1(a0(a2(x1)))) c2(c0(b0(a1(x1)))) (102)
b1(b1(b1(b1(x1)))) a1(c2(b0(b1(x1)))) (103)
b0(b1(b1(b1(x1)))) a0(c2(b0(b1(x1)))) (104)
b2(b1(b1(b1(x1)))) a2(c2(b0(b1(x1)))) (105)
b1(b1(b1(c1(x1)))) a1(c2(b0(c1(x1)))) (106)
b0(b1(b1(c1(x1)))) a0(c2(b0(c1(x1)))) (107)
b2(b1(b1(c1(x1)))) a2(c2(b0(c1(x1)))) (108)
b1(b1(b1(a1(x1)))) a1(c2(b0(a1(x1)))) (109)
b0(b1(b1(a1(x1)))) a0(c2(b0(a1(x1)))) (110)
b2(b1(b1(a1(x1)))) a2(c2(b0(a1(x1)))) (111)
b1(a1(a2(b2(x1)))) a1(a2(b2(b1(x1)))) (112)
b0(a1(a2(b2(x1)))) a0(a2(b2(b1(x1)))) (113)
b2(a1(a2(b2(x1)))) a2(a2(b2(b1(x1)))) (114)
b1(a1(a2(a2(x1)))) a1(a2(b2(a1(x1)))) (115)
b0(a1(a2(a2(x1)))) a0(a2(b2(a1(x1)))) (116)
b2(a1(a2(a2(x1)))) a2(a2(b2(a1(x1)))) (117)
b1(a1(c2(b0(x1)))) a1(b2(b1(b1(x1)))) (118)
b0(a1(c2(b0(x1)))) a0(b2(b1(b1(x1)))) (119)
b2(a1(c2(b0(x1)))) a2(b2(b1(b1(x1)))) (120)
b1(a1(c2(c0(x1)))) a1(b2(b1(c1(x1)))) (121)
b0(a1(c2(c0(x1)))) a0(b2(b1(c1(x1)))) (122)
b2(a1(c2(c0(x1)))) a2(b2(b1(c1(x1)))) (123)
b1(a1(c2(a0(x1)))) a1(b2(b1(a1(x1)))) (124)
b0(a1(c2(a0(x1)))) a0(b2(b1(a1(x1)))) (125)
b2(a1(c2(a0(x1)))) a2(b2(b1(a1(x1)))) (126)

1.1.1.1.1 Dependency Pair Transformation

The following set of initial dependency pairs has been identified.
c0#(b0(b1(c1(x1)))) c0#(x1) (127)
c0#(b0(b1(c1(x1)))) c0#(a0(c2(c0(x1)))) (128)
c0#(b0(b1(c1(x1)))) c2#(c0(x1)) (129)
c0#(b0(b1(b1(x1)))) c0#(a0(c2(b0(x1)))) (130)
c0#(b0(b1(b1(x1)))) c2#(b0(x1)) (131)
c0#(b0(b1(b1(x1)))) b0#(x1) (132)
c0#(b0(b1(a1(x1)))) c0#(a0(c2(a0(x1)))) (133)
c0#(b0(b1(a1(x1)))) c2#(a0(x1)) (134)
c1#(b0(b1(c1(x1)))) c0#(x1) (135)
c1#(b0(b1(c1(x1)))) c1#(a0(c2(c0(x1)))) (136)
c1#(b0(b1(c1(x1)))) c2#(c0(x1)) (137)
c1#(b0(b1(b1(x1)))) c1#(a0(c2(b0(x1)))) (138)
c1#(b0(b1(b1(x1)))) c2#(b0(x1)) (139)
c1#(b0(b1(b1(x1)))) b0#(x1) (140)
c1#(b0(b1(a1(x1)))) c1#(a0(c2(a0(x1)))) (141)
c1#(b0(b1(a1(x1)))) c2#(a0(x1)) (142)
c2#(b0(b1(c1(x1)))) c0#(x1) (143)
c2#(b0(b1(c1(x1)))) c2#(c0(x1)) (144)
c2#(b0(b1(c1(x1)))) c2#(a0(c2(c0(x1)))) (145)
c2#(b0(b1(b1(x1)))) c2#(b0(x1)) (146)
c2#(b0(b1(b1(x1)))) c2#(a0(c2(b0(x1)))) (147)
c2#(b0(b1(b1(x1)))) b0#(x1) (148)
c2#(b0(b1(a1(x1)))) c2#(a0(x1)) (149)
c2#(b0(b1(a1(x1)))) c2#(a0(c2(a0(x1)))) (150)
b0#(b1(b1(c1(x1)))) c2#(b0(c1(x1))) (151)
b0#(b1(b1(c1(x1)))) b0#(c1(x1)) (152)
b0#(b1(b1(b1(x1)))) c2#(b0(b1(x1))) (153)
b0#(b1(b1(b1(x1)))) b0#(b1(x1)) (154)
b0#(b1(b1(a1(x1)))) c2#(b0(a1(x1))) (155)
b0#(b1(b1(a1(x1)))) b0#(a1(x1)) (156)
b0#(a1(c2(c0(x1)))) c1#(x1) (157)
b0#(a1(c2(c0(x1)))) b1#(c1(x1)) (158)
b0#(a1(c2(c0(x1)))) b2#(b1(c1(x1))) (159)
b0#(a1(c2(b0(x1)))) b1#(x1) (160)
b0#(a1(c2(b0(x1)))) b1#(b1(x1)) (161)
b0#(a1(c2(b0(x1)))) b2#(b1(b1(x1))) (162)
b0#(a1(c2(a0(x1)))) b1#(a1(x1)) (163)
b0#(a1(c2(a0(x1)))) b2#(b1(a1(x1))) (164)
b0#(a1(a2(b2(x1)))) b1#(x1) (165)
b0#(a1(a2(b2(x1)))) b2#(b1(x1)) (166)
b0#(a1(a2(a2(x1)))) b2#(a1(x1)) (167)
b1#(b1(b1(c1(x1)))) c2#(b0(c1(x1))) (168)
b1#(b1(b1(c1(x1)))) b0#(c1(x1)) (169)
b1#(b1(b1(b1(x1)))) c2#(b0(b1(x1))) (170)
b1#(b1(b1(b1(x1)))) b0#(b1(x1)) (171)
b1#(b1(b1(a1(x1)))) c2#(b0(a1(x1))) (172)
b1#(b1(b1(a1(x1)))) b0#(a1(x1)) (173)
b1#(a1(c2(c0(x1)))) c1#(x1) (174)
b1#(a1(c2(c0(x1)))) b1#(c1(x1)) (175)
b1#(a1(c2(c0(x1)))) b2#(b1(c1(x1))) (176)
b1#(a1(c2(b0(x1)))) b1#(x1) (177)
b1#(a1(c2(b0(x1)))) b1#(b1(x1)) (178)
b1#(a1(c2(b0(x1)))) b2#(b1(b1(x1))) (179)
b1#(a1(c2(a0(x1)))) b1#(a1(x1)) (180)
b1#(a1(c2(a0(x1)))) b2#(b1(a1(x1))) (181)
b1#(a1(a2(b2(x1)))) b1#(x1) (182)
b1#(a1(a2(b2(x1)))) b2#(b1(x1)) (183)
b1#(a1(a2(a2(x1)))) b2#(a1(x1)) (184)
b2#(c1(a0(b2(x1)))) c0#(b0(b1(x1))) (185)
b2#(c1(a0(b2(x1)))) c2#(c0(b0(b1(x1)))) (186)
b2#(c1(a0(b2(x1)))) b0#(b1(x1)) (187)
b2#(c1(a0(b2(x1)))) b1#(x1) (188)
b2#(c1(a0(a2(x1)))) c0#(b0(a1(x1))) (189)
b2#(c1(a0(a2(x1)))) c2#(c0(b0(a1(x1)))) (190)
b2#(c1(a0(a2(x1)))) b0#(a1(x1)) (191)
b2#(b1(b1(c1(x1)))) c2#(b0(c1(x1))) (192)
b2#(b1(b1(c1(x1)))) b0#(c1(x1)) (193)
b2#(b1(b1(b1(x1)))) c2#(b0(b1(x1))) (194)
b2#(b1(b1(b1(x1)))) b0#(b1(x1)) (195)
b2#(b1(b1(a1(x1)))) c2#(b0(a1(x1))) (196)
b2#(b1(b1(a1(x1)))) b0#(a1(x1)) (197)
b2#(a1(c2(c0(x1)))) c1#(x1) (198)
b2#(a1(c2(c0(x1)))) b1#(c1(x1)) (199)
b2#(a1(c2(c0(x1)))) b2#(b1(c1(x1))) (200)
b2#(a1(c2(b0(x1)))) b1#(x1) (201)
b2#(a1(c2(b0(x1)))) b1#(b1(x1)) (202)
b2#(a1(c2(b0(x1)))) b2#(b1(b1(x1))) (203)
b2#(a1(c2(a0(x1)))) b1#(a1(x1)) (204)
b2#(a1(c2(a0(x1)))) b2#(b1(a1(x1))) (205)
b2#(a1(a2(b2(x1)))) b1#(x1) (206)
b2#(a1(a2(b2(x1)))) b2#(b1(x1)) (207)
b2#(a1(a2(a2(x1)))) b2#(a1(x1)) (208)

1.1.1.1.1.1 Monotonic Reduction Pair Processor with Usable Rules

Using the matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[c0(x1)] = x1 +
2
[c1(x1)] = x1 +
2
[c2(x1)] = x1 +
2
[b0(x1)] = x1 +
2
[b1(x1)] = x1 +
2
[b2(x1)] = x1 +
2
[a0(x1)] = x1 +
2
[a1(x1)] = x1 +
2
[a2(x1)] = x1 +
2
[c0#(x1)] = x1 +
0
[c1#(x1)] = x1 +
2
[c2#(x1)] = x1 +
0
[b0#(x1)] = x1 +
2
[b1#(x1)] = x1 +
1
[b2#(x1)] = x1 +
2
together with the usable rules
c1(b0(b1(b1(x1)))) c1(a0(c2(b0(x1)))) (92)
c0(b0(b1(b1(x1)))) c0(a0(c2(b0(x1)))) (93)
c2(b0(b1(b1(x1)))) c2(a0(c2(b0(x1)))) (94)
c1(b0(b1(c1(x1)))) c1(a0(c2(c0(x1)))) (95)
c0(b0(b1(c1(x1)))) c0(a0(c2(c0(x1)))) (96)
c2(b0(b1(c1(x1)))) c2(a0(c2(c0(x1)))) (97)
c1(b0(b1(a1(x1)))) c1(a0(c2(a0(x1)))) (98)
c0(b0(b1(a1(x1)))) c0(a0(c2(a0(x1)))) (99)
c2(b0(b1(a1(x1)))) c2(a0(c2(a0(x1)))) (100)
b2(c1(a0(b2(x1)))) c2(c0(b0(b1(x1)))) (101)
b2(c1(a0(a2(x1)))) c2(c0(b0(a1(x1)))) (102)
b1(b1(b1(b1(x1)))) a1(c2(b0(b1(x1)))) (103)
b0(b1(b1(b1(x1)))) a0(c2(b0(b1(x1)))) (104)
b2(b1(b1(b1(x1)))) a2(c2(b0(b1(x1)))) (105)
b1(b1(b1(c1(x1)))) a1(c2(b0(c1(x1)))) (106)
b0(b1(b1(c1(x1)))) a0(c2(b0(c1(x1)))) (107)
b2(b1(b1(c1(x1)))) a2(c2(b0(c1(x1)))) (108)
b1(b1(b1(a1(x1)))) a1(c2(b0(a1(x1)))) (109)
b0(b1(b1(a1(x1)))) a0(c2(b0(a1(x1)))) (110)
b2(b1(b1(a1(x1)))) a2(c2(b0(a1(x1)))) (111)
b1(a1(a2(b2(x1)))) a1(a2(b2(b1(x1)))) (112)
b0(a1(a2(b2(x1)))) a0(a2(b2(b1(x1)))) (113)
b2(a1(a2(b2(x1)))) a2(a2(b2(b1(x1)))) (114)
b1(a1(a2(a2(x1)))) a1(a2(b2(a1(x1)))) (115)
b0(a1(a2(a2(x1)))) a0(a2(b2(a1(x1)))) (116)
b2(a1(a2(a2(x1)))) a2(a2(b2(a1(x1)))) (117)
b1(a1(c2(b0(x1)))) a1(b2(b1(b1(x1)))) (118)
b0(a1(c2(b0(x1)))) a0(b2(b1(b1(x1)))) (119)
b2(a1(c2(b0(x1)))) a2(b2(b1(b1(x1)))) (120)
b1(a1(c2(c0(x1)))) a1(b2(b1(c1(x1)))) (121)
b0(a1(c2(c0(x1)))) a0(b2(b1(c1(x1)))) (122)
b2(a1(c2(c0(x1)))) a2(b2(b1(c1(x1)))) (123)
b1(a1(c2(a0(x1)))) a1(b2(b1(a1(x1)))) (124)
b0(a1(c2(a0(x1)))) a0(b2(b1(a1(x1)))) (125)
b2(a1(c2(a0(x1)))) a2(b2(b1(a1(x1)))) (126)
(w.r.t. the implicit argument filter of the reduction pair), the pairs
c0#(b0(b1(c1(x1)))) c0#(x1) (127)
c0#(b0(b1(c1(x1)))) c2#(c0(x1)) (129)
c0#(b0(b1(b1(x1)))) c2#(b0(x1)) (131)
c0#(b0(b1(b1(x1)))) b0#(x1) (132)
c0#(b0(b1(a1(x1)))) c2#(a0(x1)) (134)
c1#(b0(b1(c1(x1)))) c0#(x1) (135)
c1#(b0(b1(c1(x1)))) c2#(c0(x1)) (137)
c1#(b0(b1(b1(x1)))) c2#(b0(x1)) (139)
c1#(b0(b1(b1(x1)))) b0#(x1) (140)
c1#(b0(b1(a1(x1)))) c2#(a0(x1)) (142)
c2#(b0(b1(c1(x1)))) c0#(x1) (143)
c2#(b0(b1(c1(x1)))) c2#(c0(x1)) (144)
c2#(b0(b1(b1(x1)))) c2#(b0(x1)) (146)
c2#(b0(b1(b1(x1)))) b0#(x1) (148)
c2#(b0(b1(a1(x1)))) c2#(a0(x1)) (149)
b0#(b1(b1(c1(x1)))) c2#(b0(c1(x1))) (151)
b0#(b1(b1(c1(x1)))) b0#(c1(x1)) (152)
b0#(b1(b1(b1(x1)))) c2#(b0(b1(x1))) (153)
b0#(b1(b1(b1(x1)))) b0#(b1(x1)) (154)
b0#(b1(b1(a1(x1)))) c2#(b0(a1(x1))) (155)
b0#(b1(b1(a1(x1)))) b0#(a1(x1)) (156)
b0#(a1(c2(c0(x1)))) c1#(x1) (157)
b0#(a1(c2(c0(x1)))) b1#(c1(x1)) (158)
b0#(a1(c2(c0(x1)))) b2#(b1(c1(x1))) (159)
b0#(a1(c2(b0(x1)))) b1#(x1) (160)
b0#(a1(c2(b0(x1)))) b1#(b1(x1)) (161)
b0#(a1(c2(b0(x1)))) b2#(b1(b1(x1))) (162)
b0#(a1(c2(a0(x1)))) b1#(a1(x1)) (163)
b0#(a1(c2(a0(x1)))) b2#(b1(a1(x1))) (164)
b0#(a1(a2(b2(x1)))) b1#(x1) (165)
b0#(a1(a2(b2(x1)))) b2#(b1(x1)) (166)
b0#(a1(a2(a2(x1)))) b2#(a1(x1)) (167)
b1#(b1(b1(c1(x1)))) c2#(b0(c1(x1))) (168)
b1#(b1(b1(c1(x1)))) b0#(c1(x1)) (169)
b1#(b1(b1(b1(x1)))) c2#(b0(b1(x1))) (170)
b1#(b1(b1(b1(x1)))) b0#(b1(x1)) (171)
b1#(b1(b1(a1(x1)))) c2#(b0(a1(x1))) (172)
b1#(b1(b1(a1(x1)))) b0#(a1(x1)) (173)
b1#(a1(c2(c0(x1)))) c1#(x1) (174)
b1#(a1(c2(c0(x1)))) b1#(c1(x1)) (175)
b1#(a1(c2(c0(x1)))) b2#(b1(c1(x1))) (176)
b1#(a1(c2(b0(x1)))) b1#(x1) (177)
b1#(a1(c2(b0(x1)))) b1#(b1(x1)) (178)
b1#(a1(c2(b0(x1)))) b2#(b1(b1(x1))) (179)
b1#(a1(c2(a0(x1)))) b1#(a1(x1)) (180)
b1#(a1(c2(a0(x1)))) b2#(b1(a1(x1))) (181)
b1#(a1(a2(b2(x1)))) b1#(x1) (182)
b1#(a1(a2(b2(x1)))) b2#(b1(x1)) (183)
b1#(a1(a2(a2(x1)))) b2#(a1(x1)) (184)
b2#(c1(a0(b2(x1)))) c0#(b0(b1(x1))) (185)
b2#(c1(a0(b2(x1)))) c2#(c0(b0(b1(x1)))) (186)
b2#(c1(a0(b2(x1)))) b0#(b1(x1)) (187)
b2#(c1(a0(b2(x1)))) b1#(x1) (188)
b2#(c1(a0(a2(x1)))) c0#(b0(a1(x1))) (189)
b2#(c1(a0(a2(x1)))) c2#(c0(b0(a1(x1)))) (190)
b2#(c1(a0(a2(x1)))) b0#(a1(x1)) (191)
b2#(b1(b1(c1(x1)))) c2#(b0(c1(x1))) (192)
b2#(b1(b1(c1(x1)))) b0#(c1(x1)) (193)
b2#(b1(b1(b1(x1)))) c2#(b0(b1(x1))) (194)
b2#(b1(b1(b1(x1)))) b0#(b1(x1)) (195)
b2#(b1(b1(a1(x1)))) c2#(b0(a1(x1))) (196)
b2#(b1(b1(a1(x1)))) b0#(a1(x1)) (197)
b2#(a1(c2(c0(x1)))) c1#(x1) (198)
b2#(a1(c2(c0(x1)))) b1#(c1(x1)) (199)
b2#(a1(c2(c0(x1)))) b2#(b1(c1(x1))) (200)
b2#(a1(c2(b0(x1)))) b1#(x1) (201)
b2#(a1(c2(b0(x1)))) b1#(b1(x1)) (202)
b2#(a1(c2(b0(x1)))) b2#(b1(b1(x1))) (203)
b2#(a1(c2(a0(x1)))) b1#(a1(x1)) (204)
b2#(a1(c2(a0(x1)))) b2#(b1(a1(x1))) (205)
b2#(a1(a2(b2(x1)))) b1#(x1) (206)
b2#(a1(a2(b2(x1)))) b2#(b1(x1)) (207)
b2#(a1(a2(a2(x1)))) b2#(a1(x1)) (208)
and no rules could be deleted.

1.1.1.1.1.1.1 Dependency Graph Processor

The dependency pairs are split into 0 components.