Certification Problem
Input (TPDB SRS_Relative/Zantema_06_relative/rel09)
The relative rewrite relation R/S is considered where R is the following TRS
b(q(b(x1))) |
→ |
b(p(b(x1))) |
(1) |
and S is the following TRS.
0(p(0(x1))) |
→ |
q(x1) |
(2) |
1(p(1(x1))) |
→ |
q(x1) |
(3) |
0(q(0(x1))) |
→ |
q(x1) |
(4) |
1(q(1(x1))) |
→ |
q(x1) |
(5) |
p(x1) |
→ |
1(p(1(0(1(x1))))) |
(6) |
Property / Task
Prove or disprove termination.Answer / Result
Yes.Proof (by matchbox @ termCOMP 2023)
1 Split
We split R in the relative problem D/R-D and R-D, where the rules D
are deleted.
1.1 Closure Under Flat Contexts
Using the flat contexts
{1(☐), 0(☐), b(☐), q(☐), p(☐)}
We obtain the transformed TRS
1(0(p(0(x1)))) |
→ |
1(q(x1)) |
(7) |
0(0(p(0(x1)))) |
→ |
0(q(x1)) |
(8) |
b(0(p(0(x1)))) |
→ |
b(q(x1)) |
(9) |
q(0(p(0(x1)))) |
→ |
q(q(x1)) |
(10) |
p(0(p(0(x1)))) |
→ |
p(q(x1)) |
(11) |
1(b(q(b(x1)))) |
→ |
1(b(p(b(x1)))) |
(12) |
1(1(p(1(x1)))) |
→ |
1(q(x1)) |
(13) |
1(0(q(0(x1)))) |
→ |
1(q(x1)) |
(14) |
1(1(q(1(x1)))) |
→ |
1(q(x1)) |
(15) |
1(p(x1)) |
→ |
1(1(p(1(0(1(x1)))))) |
(16) |
0(b(q(b(x1)))) |
→ |
0(b(p(b(x1)))) |
(17) |
0(1(p(1(x1)))) |
→ |
0(q(x1)) |
(18) |
0(0(q(0(x1)))) |
→ |
0(q(x1)) |
(19) |
0(1(q(1(x1)))) |
→ |
0(q(x1)) |
(20) |
0(p(x1)) |
→ |
0(1(p(1(0(1(x1)))))) |
(21) |
b(b(q(b(x1)))) |
→ |
b(b(p(b(x1)))) |
(22) |
b(1(p(1(x1)))) |
→ |
b(q(x1)) |
(23) |
b(0(q(0(x1)))) |
→ |
b(q(x1)) |
(24) |
b(1(q(1(x1)))) |
→ |
b(q(x1)) |
(25) |
b(p(x1)) |
→ |
b(1(p(1(0(1(x1)))))) |
(26) |
q(b(q(b(x1)))) |
→ |
q(b(p(b(x1)))) |
(27) |
q(1(p(1(x1)))) |
→ |
q(q(x1)) |
(28) |
q(0(q(0(x1)))) |
→ |
q(q(x1)) |
(29) |
q(1(q(1(x1)))) |
→ |
q(q(x1)) |
(30) |
q(p(x1)) |
→ |
q(1(p(1(0(1(x1)))))) |
(31) |
p(b(q(b(x1)))) |
→ |
p(b(p(b(x1)))) |
(32) |
p(1(p(1(x1)))) |
→ |
p(q(x1)) |
(33) |
p(0(q(0(x1)))) |
→ |
p(q(x1)) |
(34) |
p(1(q(1(x1)))) |
→ |
p(q(x1)) |
(35) |
p(p(x1)) |
→ |
p(1(p(1(0(1(x1)))))) |
(36) |
1.1.1 Semantic Labeling
The following interpretations form a
model
of the rules.
As carrier we take the set
{0,...,4}.
Symbols are labeled by the interpretation of their arguments using the interpretations
(modulo 5):
[1(x1)] |
= |
5x1 + 0 |
[0(x1)] |
= |
5x1 + 1 |
[b(x1)] |
= |
5x1 + 2 |
[q(x1)] |
= |
5x1 + 3 |
[p(x1)] |
= |
5x1 + 4 |
We obtain the labeled TRS
There are 150 ruless (increase limit for explicit display).
1.1.1.1 Rule Removal
Using the
matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[10(x1)] |
= |
x1 +
|
[11(x1)] |
= |
x1 +
|
[12(x1)] |
= |
x1 +
|
[13(x1)] |
= |
x1 +
|
[14(x1)] |
= |
x1 +
|
[00(x1)] |
= |
x1 +
|
[01(x1)] |
= |
x1 +
|
[02(x1)] |
= |
x1 +
|
[03(x1)] |
= |
x1 +
|
[04(x1)] |
= |
x1 +
|
[b0(x1)] |
= |
x1 +
|
[b1(x1)] |
= |
x1 +
|
[b2(x1)] |
= |
x1 +
|
[b3(x1)] |
= |
x1 +
|
[b4(x1)] |
= |
x1 +
|
[q0(x1)] |
= |
x1 +
|
[q1(x1)] |
= |
x1 +
|
[q2(x1)] |
= |
x1 +
|
[q3(x1)] |
= |
x1 +
|
[q4(x1)] |
= |
x1 +
|
[p0(x1)] |
= |
x1 +
|
[p1(x1)] |
= |
x1 +
|
[p2(x1)] |
= |
x1 +
|
[p3(x1)] |
= |
x1 +
|
[p4(x1)] |
= |
x1 +
|
all of the following rules can be deleted.
b1(04(p1(02(x1)))) |
→ |
b3(q2(x1)) |
(37) |
b1(04(p1(03(x1)))) |
→ |
b3(q3(x1)) |
(38) |
b1(04(p1(04(x1)))) |
→ |
b3(q4(x1)) |
(39) |
b1(04(p1(01(x1)))) |
→ |
b3(q1(x1)) |
(40) |
b1(04(p1(00(x1)))) |
→ |
b3(q0(x1)) |
(41) |
q1(04(p1(02(x1)))) |
→ |
q3(q2(x1)) |
(42) |
q1(04(p1(03(x1)))) |
→ |
q3(q3(x1)) |
(43) |
q1(04(p1(04(x1)))) |
→ |
q3(q4(x1)) |
(44) |
q1(04(p1(01(x1)))) |
→ |
q3(q1(x1)) |
(45) |
q1(04(p1(00(x1)))) |
→ |
q3(q0(x1)) |
(46) |
p1(04(p1(02(x1)))) |
→ |
p3(q2(x1)) |
(47) |
p1(04(p1(03(x1)))) |
→ |
p3(q3(x1)) |
(48) |
p1(04(p1(04(x1)))) |
→ |
p3(q4(x1)) |
(49) |
p1(04(p1(01(x1)))) |
→ |
p3(q1(x1)) |
(50) |
p1(04(p1(00(x1)))) |
→ |
p3(q0(x1)) |
(51) |
01(04(p1(02(x1)))) |
→ |
03(q2(x1)) |
(52) |
01(04(p1(03(x1)))) |
→ |
03(q3(x1)) |
(53) |
01(04(p1(04(x1)))) |
→ |
03(q4(x1)) |
(54) |
01(04(p1(01(x1)))) |
→ |
03(q1(x1)) |
(55) |
01(04(p1(00(x1)))) |
→ |
03(q0(x1)) |
(56) |
11(04(p1(02(x1)))) |
→ |
13(q2(x1)) |
(57) |
11(04(p1(03(x1)))) |
→ |
13(q3(x1)) |
(58) |
11(04(p1(04(x1)))) |
→ |
13(q4(x1)) |
(59) |
11(04(p1(01(x1)))) |
→ |
13(q1(x1)) |
(60) |
11(04(p1(00(x1)))) |
→ |
13(q0(x1)) |
(61) |
b0(14(p0(13(x1)))) |
→ |
b3(q3(x1)) |
(88) |
q0(14(p0(12(x1)))) |
→ |
q3(q2(x1)) |
(92) |
q0(14(p0(13(x1)))) |
→ |
q3(q3(x1)) |
(93) |
q0(14(p0(14(x1)))) |
→ |
q3(q4(x1)) |
(94) |
q0(14(p0(11(x1)))) |
→ |
q3(q1(x1)) |
(95) |
q0(14(p0(10(x1)))) |
→ |
q3(q0(x1)) |
(96) |
p0(14(p0(13(x1)))) |
→ |
p3(q3(x1)) |
(98) |
00(14(p0(13(x1)))) |
→ |
03(q3(x1)) |
(103) |
10(14(p0(13(x1)))) |
→ |
13(q3(x1)) |
(108) |
b1(03(q1(02(x1)))) |
→ |
b3(q2(x1)) |
(112) |
b1(03(q1(03(x1)))) |
→ |
b3(q3(x1)) |
(113) |
b1(03(q1(04(x1)))) |
→ |
b3(q4(x1)) |
(114) |
b1(03(q1(01(x1)))) |
→ |
b3(q1(x1)) |
(115) |
b1(03(q1(00(x1)))) |
→ |
b3(q0(x1)) |
(116) |
q1(03(q1(02(x1)))) |
→ |
q3(q2(x1)) |
(117) |
q1(03(q1(03(x1)))) |
→ |
q3(q3(x1)) |
(118) |
q1(03(q1(04(x1)))) |
→ |
q3(q4(x1)) |
(119) |
q1(03(q1(01(x1)))) |
→ |
q3(q1(x1)) |
(120) |
q1(03(q1(00(x1)))) |
→ |
q3(q0(x1)) |
(121) |
p1(03(q1(02(x1)))) |
→ |
p3(q2(x1)) |
(122) |
p1(03(q1(03(x1)))) |
→ |
p3(q3(x1)) |
(123) |
p1(03(q1(04(x1)))) |
→ |
p3(q4(x1)) |
(124) |
p1(03(q1(01(x1)))) |
→ |
p3(q1(x1)) |
(125) |
p1(03(q1(00(x1)))) |
→ |
p3(q0(x1)) |
(126) |
01(03(q1(02(x1)))) |
→ |
03(q2(x1)) |
(127) |
01(03(q1(03(x1)))) |
→ |
03(q3(x1)) |
(128) |
01(03(q1(04(x1)))) |
→ |
03(q4(x1)) |
(129) |
01(03(q1(01(x1)))) |
→ |
03(q1(x1)) |
(130) |
01(03(q1(00(x1)))) |
→ |
03(q0(x1)) |
(131) |
11(03(q1(02(x1)))) |
→ |
13(q2(x1)) |
(132) |
11(03(q1(03(x1)))) |
→ |
13(q3(x1)) |
(133) |
11(03(q1(04(x1)))) |
→ |
13(q4(x1)) |
(134) |
11(03(q1(01(x1)))) |
→ |
13(q1(x1)) |
(135) |
b0(13(q0(13(x1)))) |
→ |
b3(q3(x1)) |
(138) |
q0(13(q0(12(x1)))) |
→ |
q3(q2(x1)) |
(142) |
q0(13(q0(13(x1)))) |
→ |
q3(q3(x1)) |
(143) |
q0(13(q0(14(x1)))) |
→ |
q3(q4(x1)) |
(144) |
q0(13(q0(11(x1)))) |
→ |
q3(q1(x1)) |
(145) |
q0(13(q0(10(x1)))) |
→ |
q3(q0(x1)) |
(146) |
p0(13(q0(13(x1)))) |
→ |
p3(q3(x1)) |
(148) |
00(13(q0(13(x1)))) |
→ |
03(q3(x1)) |
(153) |
10(13(q0(13(x1)))) |
→ |
13(q3(x1)) |
(158) |
b4(p4(x1)) |
→ |
b0(14(p0(11(00(14(x1)))))) |
(164) |
b4(p1(x1)) |
→ |
b0(14(p0(11(00(11(x1)))))) |
(165) |
q4(p4(x1)) |
→ |
q0(14(p0(11(00(14(x1)))))) |
(169) |
q4(p1(x1)) |
→ |
q0(14(p0(11(00(11(x1)))))) |
(170) |
p4(p2(x1)) |
→ |
p0(14(p0(11(00(12(x1)))))) |
(172) |
p4(p3(x1)) |
→ |
p0(14(p0(11(00(13(x1)))))) |
(173) |
p4(p4(x1)) |
→ |
p0(14(p0(11(00(14(x1)))))) |
(174) |
p4(p1(x1)) |
→ |
p0(14(p0(11(00(11(x1)))))) |
(175) |
p4(p0(x1)) |
→ |
p0(14(p0(11(00(10(x1)))))) |
(176) |
04(p2(x1)) |
→ |
00(14(p0(11(00(12(x1)))))) |
(177) |
04(p3(x1)) |
→ |
00(14(p0(11(00(13(x1)))))) |
(178) |
04(p4(x1)) |
→ |
00(14(p0(11(00(14(x1)))))) |
(179) |
04(p1(x1)) |
→ |
00(14(p0(11(00(11(x1)))))) |
(180) |
04(p0(x1)) |
→ |
00(14(p0(11(00(10(x1)))))) |
(181) |
14(p4(x1)) |
→ |
10(14(p0(11(00(14(x1)))))) |
(184) |
14(p1(x1)) |
→ |
10(14(p0(11(00(11(x1)))))) |
(185) |
1.1.1.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.
1.2 Rule Removal
Using the
matrix interpretations of dimension 3 with strict dimension 1 over the arctic semiring over the naturals
[1(x1)] |
= |
· x1
|
[0(x1)] |
= |
· x1
|
[b(x1)] |
= |
· x1
|
[q(x1)] |
= |
· x1
|
[p(x1)] |
= |
· x1
|
all of the following rules can be deleted.
1.2.1 Rule Removal
Using the
matrix interpretations of dimension 1 with strict dimension 1 over the rationals with delta = 1
[1(x1)] |
= |
x1 +
|
[0(x1)] |
= |
x1 +
|
[b(x1)] |
= |
x1 +
|
[q(x1)] |
= |
x1 +
|
[p(x1)] |
= |
x1 +
|
all of the following rules can be deleted.
b(q(b(x1))) |
→ |
b(p(b(x1))) |
(1) |
1.2.1.1 R is empty
There are no rules in the TRS. Hence, it is terminating.