Certification Problem

Input (TPDB SRS_Standard/ICFP_2010/140359)

The rewrite relation of the following TRS is considered.

0(0(0(0(3(0(0(1(1(2(2(0(2(2(3(1(2(2(x1)))))))))))))))))) 0(0(2(0(2(0(3(0(2(1(0(2(0(1(1(3(2(2(x1)))))))))))))))))) (1)
0(0(1(0(1(2(3(1(0(1(2(3(0(3(2(0(3(1(x1)))))))))))))))))) 0(0(1(2(3(0(2(3(0(1(1(3(2(1(1(3(0(0(x1)))))))))))))))))) (2)
0(0(1(1(1(1(0(1(2(0(0(1(3(1(0(3(0(2(x1)))))))))))))))))) 0(0(0(2(1(0(0(1(1(1(3(3(1(1(1(0(0(2(x1)))))))))))))))))) (3)
0(0(2(0(3(0(1(3(2(2(0(0(2(0(1(3(1(2(x1)))))))))))))))))) 0(0(0(3(2(0(0(0(1(3(2(2(0(3(2(2(1(1(x1)))))))))))))))))) (4)
0(0(2(0(3(3(1(0(1(3(1(2(3(0(2(2(3(1(x1)))))))))))))))))) 0(2(0(0(0(1(3(3(2(1(3(3(2(1(3(0(2(1(x1)))))))))))))))))) (5)
0(1(0(0(1(2(1(0(0(1(0(1(3(0(1(2(1(2(x1)))))))))))))))))) 0(2(1(0(3(0(2(1(0(0(1(0(0(1(1(1(2(1(x1)))))))))))))))))) (6)
0(1(0(1(2(3(1(2(0(1(2(2(0(0(2(1(1(2(x1)))))))))))))))))) 2(1(0(0(2(1(1(1(2(1(2(2(2(1(0(3(0(0(x1)))))))))))))))))) (7)
0(1(2(0(2(2(0(2(1(0(3(1(1(0(3(1(3(2(x1)))))))))))))))))) 2(0(2(1(0(0(3(0(0(2(1(1(1(1(2(3(3(2(x1)))))))))))))))))) (8)
0(1(2(2(1(2(0(1(0(0(2(0(1(3(0(1(3(3(x1)))))))))))))))))) 2(1(0(0(1(0(0(1(3(2(1(3(2(1(2(0(0(3(x1)))))))))))))))))) (9)
0(1(2(2(2(3(1(0(1(0(3(1(0(0(1(2(3(2(x1)))))))))))))))))) 2(2(1(0(1(1(1(3(2(1(3(0(0(0(0(2(3(2(x1)))))))))))))))))) (10)
0(1(3(1(0(0(2(1(1(2(0(0(2(0(1(1(0(1(x1)))))))))))))))))) 0(1(1(0(3(1(1(1(1(0(2(0(0(0(0(1(2(2(x1)))))))))))))))))) (11)
0(2(0(1(2(0(0(3(2(3(0(3(2(2(2(0(3(0(x1)))))))))))))))))) 0(2(3(0(2(0(0(3(2(1(2(0(2(2(3(3(0(0(x1)))))))))))))))))) (12)
0(2(0(2(1(3(0(2(3(0(2(0(1(2(1(2(0(3(x1)))))))))))))))))) 0(0(2(0(0(2(1(0(3(2(1(2(3(2(2(1(0(3(x1)))))))))))))))))) (13)
0(2(1(0(1(0(1(1(1(3(0(1(1(2(0(1(1(3(x1)))))))))))))))))) 0(0(1(3(2(1(1(1(2(1(1(1(0(1(0(1(0(3(x1)))))))))))))))))) (14)
0(2(1(2(0(0(1(1(0(2(0(1(3(2(1(3(0(2(x1)))))))))))))))))) 0(2(2(1(0(3(2(1(0(0(3(2(1(2(1(0(0(1(x1)))))))))))))))))) (15)
0(2(3(1(0(1(2(3(3(0(2(0(1(2(2(1(0(3(x1)))))))))))))))))) 0(1(1(3(0(2(2(1(2(0(3(3(2(1(0(2(0(3(x1)))))))))))))))))) (16)
1(0(1(0(0(3(1(2(0(3(3(2(3(1(1(1(3(2(x1)))))))))))))))))) 1(0(1(1(1(3(1(1(0(0(3(2(3(2(0(3(3(2(x1)))))))))))))))))) (17)
1(0(1(0(3(3(1(2(0(1(2(1(2(0(2(2(0(1(x1)))))))))))))))))) 1(2(0(0(1(3(2(2(0(0(1(1(2(1(0(3(1(2(x1)))))))))))))))))) (18)
1(0(1(1(0(2(0(1(0(0(3(3(1(3(0(2(3(2(x1)))))))))))))))))) 1(1(1(3(3(0(2(1(1(3(0(0(0(0(2(3(0(2(x1)))))))))))))))))) (19)
1(0(1(3(0(3(3(0(1(2(3(2(0(0(2(0(2(3(x1)))))))))))))))))) 1(0(2(0(1(2(1(0(0(2(3(3(2(0(3(0(3(3(x1)))))))))))))))))) (20)
1(0(1(3(1(2(2(1(2(1(1(3(1(1(2(1(2(2(x1)))))))))))))))))) 1(3(2(1(1(1(2(1(3(2(2(2(1(1(1(1(0(2(x1)))))))))))))))))) (21)
1(0(2(0(0(2(2(0(1(3(3(2(2(0(1(0(1(3(x1)))))))))))))))))) 1(0(2(0(3(0(2(1(2(2(1(1(0(3(0(3(2(0(x1)))))))))))))))))) (22)
1(0(2(3(1(3(3(1(3(0(2(2(0(0(2(3(1(0(x1)))))))))))))))))) 1(0(3(0(2(0(3(3(1(2(1(2(0(3(3(1(2(0(x1)))))))))))))))))) (23)
1(0(3(1(3(1(2(3(1(0(0(0(1(1(1(3(3(1(x1)))))))))))))))))) 1(0(3(1(1(0(3(0(1(3(2(1(3(0(1(3(1(1(x1)))))))))))))))))) (24)
1(0(3(2(3(2(2(1(0(1(1(3(1(2(2(0(0(0(x1)))))))))))))))))) 1(3(1(0(2(2(3(0(2(0(2(3(0(2(1(1(1(0(x1)))))))))))))))))) (25)
1(1(0(0(0(2(1(3(1(1(3(2(2(2(3(1(3(1(x1)))))))))))))))))) 1(2(1(1(3(1(1(0(2(1(2(3(0(0(3(3(2(1(x1)))))))))))))))))) (26)
1(1(0(2(1(0(3(3(1(0(0(3(0(3(0(1(1(0(x1)))))))))))))))))) 1(1(3(3(1(0(3(3(0(0(1(1(0(0(0(2(1(0(x1)))))))))))))))))) (27)
1(1(0(2(3(1(1(0(2(3(1(1(3(1(0(2(3(1(x1)))))))))))))))))) 1(0(0(2(1(2(3(2(1(1(3(0(3(1(1(1(3(1(x1)))))))))))))))))) (28)
1(1(1(1(0(2(2(3(1(0(0(0(0(0(1(0(2(1(x1)))))))))))))))))) 1(1(1(1(0(0(2(1(2(0(2(0(0(0(0(3(1(1(x1)))))))))))))))))) (29)
1(1(1(1(2(1(1(0(1(2(2(2(0(1(3(0(1(1(x1)))))))))))))))))) 1(1(1(2(1(1(2(0(3(1(1(1(2(2(1(1(0(0(x1)))))))))))))))))) (30)
1(1(1(1(3(1(0(0(2(1(2(2(2(2(1(3(1(3(x1)))))))))))))))))) 1(2(2(1(1(2(1(2(0(0(1(1(1(2(1(3(3(3(x1)))))))))))))))))) (31)
1(2(0(3(0(2(2(2(3(1(3(1(2(2(2(3(3(2(x1)))))))))))))))))) 1(2(3(3(3(3(0(2(1(1(2(2(2(0(2(3(2(2(x1)))))))))))))))))) (32)
1(2(0(3(0(3(2(1(3(0(1(2(2(2(1(3(2(2(x1)))))))))))))))))) 1(2(2(1(3(0(2(0(3(2(3(3(2(1(0(2(2(1(x1)))))))))))))))))) (33)
1(2(1(0(2(3(2(3(1(3(3(1(3(0(2(1(1(1(x1)))))))))))))))))) 1(1(3(0(0(3(3(3(2(1(3(2(1(2(1(1(2(1(x1)))))))))))))))))) (34)
1(2(1(3(1(2(0(0(0(2(3(3(1(0(3(1(3(2(x1)))))))))))))))))) 1(3(3(0(3(2(2(3(0(1(1(1(1(2(0(3(0(2(x1)))))))))))))))))) (35)
1(2(3(2(1(3(3(2(3(1(3(1(2(1(3(1(3(2(x1)))))))))))))))))) 1(2(3(3(2(1(3(3(1(3(1(1(3(1(2(2(3(2(x1)))))))))))))))))) (36)
1(3(0(1(2(0(1(1(2(2(2(3(3(0(3(1(0(1(x1)))))))))))))))))) 1(1(0(3(3(2(1(1(3(0(1(0(0(1(3(2(2(2(x1)))))))))))))))))) (37)
1(3(1(3(0(1(3(3(2(0(1(1(2(0(3(0(1(2(x1)))))))))))))))))) 1(2(1(0(3(0(0(1(2(3(3(3(0(1(2(1(3(1(x1)))))))))))))))))) (38)
2(0(1(2(1(2(0(1(2(3(0(1(1(0(3(0(0(1(x1)))))))))))))))))) 2(1(3(3(2(1(1(2(1(0(0(1(2(0(0(0(0(1(x1)))))))))))))))))) (39)
2(0(1(3(1(2(3(2(2(0(1(2(0(1(0(1(1(1(x1)))))))))))))))))) 2(0(1(1(2(2(3(1(0(1(1(1(1(0(2(2(3(0(x1)))))))))))))))))) (40)
2(0(2(3(1(3(1(0(0(1(2(3(1(3(0(1(2(3(x1)))))))))))))))))) 0(1(0(2(2(0(3(3(2(0(2(3(1(1(1(1(3(3(x1)))))))))))))))))) (41)
2(0(3(3(2(0(0(3(0(3(3(3(2(3(0(3(2(3(x1)))))))))))))))))) 2(0(3(2(0(3(3(3(3(3(0(0(2(0(2(3(3(3(x1)))))))))))))))))) (42)
2(1(1(0(2(0(0(2(0(0(0(1(2(3(0(3(1(0(x1)))))))))))))))))) 2(3(0(0(0(0(3(0(0(2(1(2(1(1(0(2(1(0(x1)))))))))))))))))) (43)
2(1(2(2(3(1(3(3(1(2(3(2(3(2(1(2(2(3(x1)))))))))))))))))) 2(2(3(2(3(2(2(1(1(1(3(2(2(1(3(2(3(3(x1)))))))))))))))))) (44)
2(1(3(1(1(1(3(0(1(2(3(2(2(3(3(1(3(1(x1)))))))))))))))))) 2(1(3(1(2(2(3(0(2(1(1(1(1(3(3(3(3(1(x1)))))))))))))))))) (45)
2(1(3(3(2(0(1(1(0(1(1(0(0(0(1(2(0(2(x1)))))))))))))))))) 0(0(0(1(0(0(1(1(2(3(3(2(1(2(1(1(0(2(x1)))))))))))))))))) (46)
2(2(0(1(0(1(3(0(2(0(3(1(1(1(2(1(2(1(x1)))))))))))))))))) 2(0(1(1(0(0(2(0(3(1(2(1(1(3(2(1(2(1(x1)))))))))))))))))) (47)
2(2(0(2(0(2(3(1(3(3(1(3(2(0(1(2(3(1(x1)))))))))))))))))) 2(0(1(0(2(2(1(3(0(2(2(3(3(3(1(3(2(1(x1)))))))))))))))))) (48)
2(2(1(2(2(3(0(3(2(3(0(1(1(0(3(2(2(0(x1)))))))))))))))))) 2(0(2(2(2(0(3(3(2(1(2(3(2(1(1(3(0(0(x1)))))))))))))))))) (49)
2(2(1(3(2(1(2(1(1(1(2(0(1(2(0(2(3(1(x1)))))))))))))))))) 2(1(2(3(3(1(1(1(2(1(2(0(0(2(2(1(2(1(x1)))))))))))))))))) (50)
2(2(2(0(1(1(3(1(0(3(1(0(1(2(0(2(0(1(x1)))))))))))))))))) 2(0(0(2(2(1(0(2(2(0(1(1(0(3(3(1(1(1(x1)))))))))))))))))) (51)
2(2(2(2(2(2(2(0(2(0(1(2(3(1(0(1(0(1(x1)))))))))))))))))) 0(2(2(2(1(2(2(3(2(1(0(1(2(1(0(2(0(2(x1)))))))))))))))))) (52)
2(2(2(2(2(3(0(3(3(1(2(1(2(2(0(3(0(1(x1)))))))))))))))))) 2(0(0(2(3(3(0(2(2(1(2(3(2(3(2(1(2(1(x1)))))))))))))))))) (53)
2(3(0(0(3(1(1(0(1(2(2(0(1(2(0(0(1(2(x1)))))))))))))))))) 0(3(2(3(1(1(0(0(1(1(0(2(1(0(2(0(2(2(x1)))))))))))))))))) (54)
2(3(1(1(1(3(1(2(0(1(2(2(3(2(0(1(0(2(x1)))))))))))))))))) 0(2(0(2(2(3(2(2(1(3(2(1(3(1(0(1(1(1(x1)))))))))))))))))) (55)
2(3(3(2(3(0(1(1(2(2(0(3(0(1(1(3(2(2(x1)))))))))))))))))) 2(3(3(3(0(2(0(2(1(3(2(1(3(1(1(0(2(2(x1)))))))))))))))))) (56)
2(3(3(3(1(1(3(0(0(1(2(0(3(0(3(2(0(3(x1)))))))))))))))))) 2(3(3(3(3(2(1(0(1(0(0(3(2(1(3(0(0(3(x1)))))))))))))))))) (57)
3(0(1(2(3(3(1(3(1(0(1(3(0(2(2(3(1(0(x1)))))))))))))))))) 3(2(0(0(2(1(1(1(0(3(2(1(1(3(3(3(3(0(x1)))))))))))))))))) (58)
3(0(2(3(3(0(3(1(0(3(0(0(3(3(2(0(1(3(x1)))))))))))))))))) 3(3(3(3(2(1(0(0(0(1(0(3(3(0(3(2(0(3(x1)))))))))))))))))) (59)
3(0(3(1(3(0(3(1(0(3(0(3(1(2(3(3(3(2(x1)))))))))))))))))) 3(0(1(1(1(3(3(3(2(3(0(3(3(3(3(2(0(0(x1)))))))))))))))))) (60)
3(0(3(2(3(1(2(1(2(2(0(3(1(3(2(3(2(3(x1)))))))))))))))))) 3(2(2(3(2(2(1(1(3(1(3(0(2(2(3(3(0(3(x1)))))))))))))))))) (61)
3(1(0(3(1(1(3(1(1(3(1(2(2(3(1(2(3(1(x1)))))))))))))))))) 3(1(1(2(3(3(1(3(3(1(1(0(2(2(1(1(3(1(x1)))))))))))))))))) (62)
3(1(1(1(1(2(3(0(3(1(3(3(0(3(3(0(3(1(x1)))))))))))))))))) 3(3(1(1(1(0(1(1(0(3(0(3(3(3(1(3(3(2(x1)))))))))))))))))) (63)
3(1(1(3(1(3(0(0(0(3(1(2(0(1(0(1(2(1(x1)))))))))))))))))) 3(1(1(1(2(0(3(0(1(0(0(1(3(3(2(0(1(1(x1)))))))))))))))))) (64)
3(1(2(2(3(1(0(0(3(3(0(1(3(0(0(2(1(1(x1)))))))))))))))))) 3(3(0(0(2(3(3(0(3(1(2(2(0(0(1(1(1(1(x1)))))))))))))))))) (65)
3(1(2(3(3(2(2(3(1(1(3(3(1(2(0(1(2(2(x1)))))))))))))))))) 3(0(1(2(3(2(1(1(2(3(3(3(2(2(1(1(2(3(x1)))))))))))))))))) (66)
3(1(3(0(0(1(0(1(2(2(0(1(1(3(0(2(2(1(x1)))))))))))))))))) 3(1(2(2(3(1(1(1(0(2(0(2(0(3(0(0(1(1(x1)))))))))))))))))) (67)
3(1(3(0(0(3(0(0(3(1(1(3(2(3(1(2(1(3(x1)))))))))))))))))) 3(3(3(3(0(3(3(0(1(1(1(0(0(1(2(1(2(3(x1)))))))))))))))))) (68)
3(1(3(1(0(3(0(3(2(2(2(2(3(0(2(3(3(1(x1)))))))))))))))))) 3(2(0(3(3(3(3(0(0(1(1(2(3(2(2(3(2(1(x1)))))))))))))))))) (69)
3(1(3(1(0(3(3(0(0(3(2(0(1(2(0(0(1(0(x1)))))))))))))))))) 3(2(1(3(3(0(0(1(3(0(1(1(0(0(2(3(0(0(x1)))))))))))))))))) (70)
3(1(3(1(3(3(2(2(0(3(2(3(1(0(1(2(2(3(x1)))))))))))))))))) 3(3(2(3(1(0(3(2(1(1(2(3(0(3(1(2(2(3(x1)))))))))))))))))) (71)
3(1(3(2(3(1(0(1(3(2(3(2(0(0(2(0(2(2(x1)))))))))))))))))) 3(3(3(2(1(2(1(3(0(0(2(1(2(3(0(2(2(0(x1)))))))))))))))))) (72)
3(1(3(2(3(2(3(0(3(3(1(3(2(2(2(3(3(3(x1)))))))))))))))))) 3(2(1(2(2(2(3(3(3(3(3(3(2(0(1(3(3(3(x1)))))))))))))))))) (73)
3(2(0(3(1(3(2(2(2(2(1(3(0(3(0(2(1(1(x1)))))))))))))))))) 3(2(2(1(0(2(1(0(3(3(2(3(0(1(3(2(1(2(x1)))))))))))))))))) (74)
3(2(3(3(3(0(0(3(3(1(3(0(3(3(3(2(3(3(x1)))))))))))))))))) 3(2(3(0(3(3(3(3(0(2(0(3(3(3(1(3(3(3(x1)))))))))))))))))) (75)
3(2(3(3(3(1(2(2(3(3(1(3(2(3(0(3(0(3(x1)))))))))))))))))) 3(3(3(3(3(2(2(3(0(3(3(3(3(2(2(0(1(1(x1)))))))))))))))))) (76)
3(3(2(1(0(3(0(1(3(3(2(2(2(0(1(0(3(2(x1)))))))))))))))))) 3(3(3(3(2(2(1(2(0(3(2(0(0(1(1(0(3(2(x1)))))))))))))))))) (77)
3(3(2(1(2(2(2(2(1(3(0(0(1(3(0(3(0(2(x1)))))))))))))))))) 3(3(2(2(2(3(0(2(2(1(3(3(0(0(0(1(1(2(x1)))))))))))))))))) (78)
3(3(2(3(0(1(2(0(3(3(1(2(2(1(0(2(3(1(x1)))))))))))))))))) 3(0(1(1(1(3(2(2(3(0(2(3(3(0(2(1(3(2(x1)))))))))))))))))) (79)
3(3(3(1(3(1(2(2(1(3(0(1(3(1(1(1(2(0(x1)))))))))))))))))) 3(3(2(3(1(1(2(1(3(1(3(1(3(2(0(1(1(0(x1)))))))))))))))))) (80)

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

Proof (by AProVE @ termCOMP 2023)

1 String Reversal

Since only unary symbols occur, one can reverse all terms and obtains the TRS
2(2(1(3(2(2(0(2(2(1(1(0(0(3(0(0(0(0(x1)))))))))))))))))) 2(2(3(1(1(0(2(0(1(2(0(3(0(2(0(2(0(0(x1)))))))))))))))))) (81)
1(3(0(2(3(0(3(2(1(0(1(3(2(1(0(1(0(0(x1)))))))))))))))))) 0(0(3(1(1(2(3(1(1(0(3(2(0(3(2(1(0(0(x1)))))))))))))))))) (82)
2(0(3(0(1(3(1(0(0(2(1(0(1(1(1(1(0(0(x1)))))))))))))))))) 2(0(0(1(1(1(3(3(1(1(1(0(0(1(2(0(0(0(x1)))))))))))))))))) (83)
2(1(3(1(0(2(0(0(2(2(3(1(0(3(0(2(0(0(x1)))))))))))))))))) 1(1(2(2(3(0(2(2(3(1(0(0(0(2(3(0(0(0(x1)))))))))))))))))) (84)
1(3(2(2(0(3(2(1(3(1(0(1(3(3(0(2(0(0(x1)))))))))))))))))) 1(2(0(3(1(2(3(3(1(2(3(3(1(0(0(0(2(0(x1)))))))))))))))))) (85)
2(1(2(1(0(3(1(0(1(0(0(1(2(1(0(0(1(0(x1)))))))))))))))))) 1(2(1(1(1(0(0(1(0(0(1(2(0(3(0(1(2(0(x1)))))))))))))))))) (86)
2(1(1(2(0(0(2(2(1(0(2(1(3(2(1(0(1(0(x1)))))))))))))))))) 0(0(3(0(1(2(2(2(1(2(1(1(1(2(0(0(1(2(x1)))))))))))))))))) (87)
2(3(1(3(0(1(1(3(0(1(2(0(2(2(0(2(1(0(x1)))))))))))))))))) 2(3(3(2(1(1(1(1(2(0(0(3(0(0(1(2(0(2(x1)))))))))))))))))) (88)
3(3(1(0(3(1(0(2(0(0(1(0(2(1(2(2(1(0(x1)))))))))))))))))) 3(0(0(2(1(2(3(1(2(3(1(0(0(1(0(0(1(2(x1)))))))))))))))))) (89)
2(3(2(1(0(0(1(3(0(1(0(1(3(2(2(2(1(0(x1)))))))))))))))))) 2(3(2(0(0(0(0(3(1(2(3(1(1(1(0(1(2(2(x1)))))))))))))))))) (90)
1(0(1(1(0(2(0(0(2(1(1(2(0(0(1(3(1(0(x1)))))))))))))))))) 2(2(1(0(0(0(0(2(0(1(1(1(1(3(0(1(1(0(x1)))))))))))))))))) (91)
0(3(0(2(2(2(3(0(3(2(3(0(0(2(1(0(2(0(x1)))))))))))))))))) 0(0(3(3(2(2(0(2(1(2(3(0(0(2(0(3(2(0(x1)))))))))))))))))) (92)
3(0(2(1(2(1(0(2(0(3(2(0(3(1(2(0(2(0(x1)))))))))))))))))) 3(0(1(2(2(3(2(1(2(3(0(1(2(0(0(2(0(0(x1)))))))))))))))))) (93)
3(1(1(0(2(1(1(0(3(1(1(1(0(1(0(1(2(0(x1)))))))))))))))))) 3(0(1(0(1(0(1(1(1(2(1(1(1(2(3(1(0(0(x1)))))))))))))))))) (94)
2(0(3(1(2(3(1(0(2(0(1(1(0(0(2(1(2(0(x1)))))))))))))))))) 1(0(0(1(2(1(2(3(0(0(1(2(3(0(1(2(2(0(x1)))))))))))))))))) (95)
3(0(1(2(2(1(0(2(0(3(3(2(1(0(1(3(2(0(x1)))))))))))))))))) 3(0(2(0(1(2(3(3(0(2(1(2(2(0(3(1(1(0(x1)))))))))))))))))) (96)
2(3(1(1(1(3(2(3(3(0(2(1(3(0(0(1(0(1(x1)))))))))))))))))) 2(3(3(0(2(3(2(3(0(0(1(1(3(1(1(1(0(1(x1)))))))))))))))))) (97)
1(0(2(2(0(2(1(2(1(0(2(1(3(3(0(1(0(1(x1)))))))))))))))))) 2(1(3(0(1(2(1(1(0(0(2(2(3(1(0(0(2(1(x1)))))))))))))))))) (98)
2(3(2(0(3(1(3(3(0(0(1(0(2(0(1(1(0(1(x1)))))))))))))))))) 2(0(3(2(0(0(0(0(3(1(1(2(0(3(3(1(1(1(x1)))))))))))))))))) (99)
3(2(0(2(0(0(2(3(2(1(0(3(3(0(3(1(0(1(x1)))))))))))))))))) 3(3(0(3(0(2(3(3(2(0(0(1(2(1(0(2(0(1(x1)))))))))))))))))) (100)
2(2(1(2(1(1(3(1(1(2(1(2(2(1(3(1(0(1(x1)))))))))))))))))) 2(0(1(1(1(1(2(2(2(3(1(2(1(1(1(2(3(1(x1)))))))))))))))))) (101)
3(1(0(1(0(2(2(3(3(1(0(2(2(0(0(2(0(1(x1)))))))))))))))))) 0(2(3(0(3(0(1(1(2(2(1(2(0(3(0(2(0(1(x1)))))))))))))))))) (102)
0(1(3(2(0(0(2(2(0(3(1(3(3(1(3(2(0(1(x1)))))))))))))))))) 0(2(1(3(3(0(2(1(2(1(3(3(0(2(0(3(0(1(x1)))))))))))))))))) (103)
1(3(3(1(1(1(0(0(0(1(3(2(1(3(1(3(0(1(x1)))))))))))))))))) 1(1(3(1(0(3(1(2(3(1(0(3(0(1(1(3(0(1(x1)))))))))))))))))) (104)
0(0(0(2(2(1(3(1(1(0(1(2(2(3(2(3(0(1(x1)))))))))))))))))) 0(1(1(1(2(0(3(2(0(2(0(3(2(2(0(1(3(1(x1)))))))))))))))))) (105)
1(3(1(3(2(2(2(3(1(1(3(1(2(0(0(0(1(1(x1)))))))))))))))))) 1(2(3(3(0(0(3(2(1(2(0(1(1(3(1(1(2(1(x1)))))))))))))))))) (106)
0(1(1(0(3(0(3(0(0(1(3(3(0(1(2(0(1(1(x1)))))))))))))))))) 0(1(2(0(0(0(1(1(0(0(3(3(0(1(3(3(1(1(x1)))))))))))))))))) (107)
1(3(2(0(1(3(1(1(3(2(0(1(1(3(2(0(1(1(x1)))))))))))))))))) 1(3(1(1(1(3(0(3(1(1(2(3(2(1(2(0(0(1(x1)))))))))))))))))) (108)
1(2(0(1(0(0(0(0(0(1(3(2(2(0(1(1(1(1(x1)))))))))))))))))) 1(1(3(0(0(0(0(2(0(2(1(2(0(0(1(1(1(1(x1)))))))))))))))))) (109)
1(1(0(3(1(0(2(2(2(1(0(1(1(2(1(1(1(1(x1)))))))))))))))))) 0(0(1(1(2(2(1(1(1(3(0(2(1(1(2(1(1(1(x1)))))))))))))))))) (110)
3(1(3(1(2(2(2(2(1(2(0(0(1(3(1(1(1(1(x1)))))))))))))))))) 3(3(3(1(2(1(1(1(0(0(2(1(2(1(1(2(2(1(x1)))))))))))))))))) (111)
2(3(3(2(2(2(1(3(1(3(2(2(2(0(3(0(2(1(x1)))))))))))))))))) 2(2(3(2(0(2(2(2(1(1(2(0(3(3(3(3(2(1(x1)))))))))))))))))) (112)
2(2(3(1(2(2(2(1(0(3(1(2(3(0(3(0(2(1(x1)))))))))))))))))) 1(2(2(0(1(2(3(3(2(3(0(2(0(3(1(2(2(1(x1)))))))))))))))))) (113)
1(1(1(2(0(3(1(3(3(1(3(2(3(2(0(1(2(1(x1)))))))))))))))))) 1(2(1(1(2(1(2(3(1(2(3(3(3(0(0(3(1(1(x1)))))))))))))))))) (114)
2(3(1(3(0(1(3(3(2(0(0(0(2(1(3(1(2(1(x1)))))))))))))))))) 2(0(3(0(2(1(1(1(1(0(3(2(2(3(0(3(3(1(x1)))))))))))))))))) (115)
2(3(1(3(1(2(1(3(1(3(2(3(3(1(2(3(2(1(x1)))))))))))))))))) 2(3(2(2(1(3(1(1(3(1(3(3(1(2(3(3(2(1(x1)))))))))))))))))) (116)
1(0(1(3(0(3(3(2(2(2(1(1(0(2(1(0(3(1(x1)))))))))))))))))) 2(2(2(3(1(0(0(1(0(3(1(1(2(3(3(0(1(1(x1)))))))))))))))))) (117)
2(1(0(3(0(2(1(1(0(2(3(3(1(0(3(1(3(1(x1)))))))))))))))))) 1(3(1(2(1(0(3(3(3(2(1(0(0(3(0(1(2(1(x1)))))))))))))))))) (118)
1(0(0(3(0(1(1(0(3(2(1(0(2(1(2(1(0(2(x1)))))))))))))))))) 1(0(0(0(0(2(1(0(0(1(2(1(1(2(3(3(1(2(x1)))))))))))))))))) (119)
1(1(1(0(1(0(2(1(0(2(2(3(2(1(3(1(0(2(x1)))))))))))))))))) 0(3(2(2(0(1(1(1(1(0(1(3(2(2(1(1(0(2(x1)))))))))))))))))) (120)
3(2(1(0(3(1(3(2(1(0(0(1(3(1(3(2(0(2(x1)))))))))))))))))) 3(3(1(1(1(1(3(2(0(2(3(3(0(2(2(0(1(0(x1)))))))))))))))))) (121)
3(2(3(0(3(2(3(3(3(0(3(0(0(2(3(3(0(2(x1)))))))))))))))))) 3(3(3(2(0(2(0(0(3(3(3(3(3(0(2(3(0(2(x1)))))))))))))))))) (122)
0(1(3(0(3(2(1(0(0(0(2(0(0(2(0(1(1(2(x1)))))))))))))))))) 0(1(2(0(1(1(2(1(2(0(0(3(0(0(0(0(3(2(x1)))))))))))))))))) (123)
3(2(2(1(2(3(2(3(2(1(3(3(1(3(2(2(1(2(x1)))))))))))))))))) 3(3(2(3(1(2(2(3(1(1(1(2(2(3(2(3(2(2(x1)))))))))))))))))) (124)
1(3(1(3(3(2(2(3(2(1(0(3(1(1(1(3(1(2(x1)))))))))))))))))) 1(3(3(3(3(1(1(1(1(2(0(3(2(2(1(3(1(2(x1)))))))))))))))))) (125)
2(0(2(1(0(0(0(1(1(0(1(1(0(2(3(3(1(2(x1)))))))))))))))))) 2(0(1(1(2(1(2(3(3(2(1(1(0(0(1(0(0(0(x1)))))))))))))))))) (126)
1(2(1(2(1(1(1(3(0(2(0(3(1(0(1(0(2(2(x1)))))))))))))))))) 1(2(1(2(3(1(1(2(1(3(0(2(0(0(1(1(0(2(x1)))))))))))))))))) (127)
1(3(2(1(0(2(3(1(3(3(1(3(2(0(2(0(2(2(x1)))))))))))))))))) 1(2(3(1(3(3(3(2(2(0(3(1(2(2(0(1(0(2(x1)))))))))))))))))) (128)
0(2(2(3(0(1(1(0(3(2(3(0(3(2(2(1(2(2(x1)))))))))))))))))) 0(0(3(1(1(2(3(2(1(2(3(3(0(2(2(2(0(2(x1)))))))))))))))))) (129)
1(3(2(0(2(1(0(2(1(1(1(2(1(2(3(1(2(2(x1)))))))))))))))))) 1(2(1(2(2(0(0(2(1(2(1(1(1(3(3(2(1(2(x1)))))))))))))))))) (130)
1(0(2(0(2(1(0(1(3(0(1(3(1(1(0(2(2(2(x1)))))))))))))))))) 1(1(1(3(3(0(1(1(0(2(2(0(1(2(2(0(0(2(x1)))))))))))))))))) (131)
1(0(1(0(1(3(2(1(0(2(0(2(2(2(2(2(2(2(x1)))))))))))))))))) 2(0(2(0(1(2(1(0(1(2(3(2(2(1(2(2(2(0(x1)))))))))))))))))) (132)
1(0(3(0(2(2(1(2(1(3(3(0(3(2(2(2(2(2(x1)))))))))))))))))) 1(2(1(2(3(2(3(2(1(2(2(0(3(3(2(0(0(2(x1)))))))))))))))))) (133)
2(1(0(0(2(1(0(2(2(1(0(1(1(3(0(0(3(2(x1)))))))))))))))))) 2(2(0(2(0(1(2(0(1(1(0(0(1(1(3(2(3(0(x1)))))))))))))))))) (134)
2(0(1(0(2(3(2(2(1(0(2(1(3(1(1(1(3(2(x1)))))))))))))))))) 1(1(1(0(1(3(1(2(3(1(2(2(3(2(2(0(2(0(x1)))))))))))))))))) (135)
2(2(3(1(1(0(3(0(2(2(1(1(0(3(2(3(3(2(x1)))))))))))))))))) 2(2(0(1(1(3(1(2(3(1(2(0(2(0(3(3(3(2(x1)))))))))))))))))) (136)
3(0(2(3(0(3(0(2(1(0(0(3(1(1(3(3(3(2(x1)))))))))))))))))) 3(0(0(3(1(2(3(0(0(1(0(1(2(3(3(3(3(2(x1)))))))))))))))))) (137)
0(1(3(2(2(0(3(1(0(1(3(1(3(3(2(1(0(3(x1)))))))))))))))))) 0(3(3(3(3(1(1(2(3(0(1(1(1(2(0(0(2(3(x1)))))))))))))))))) (138)
3(1(0(2(3(3(0(0(3(0(1(3(0(3(3(2(0(3(x1)))))))))))))))))) 3(0(2(3(0(3(3(0(1(0(0(0(1(2(3(3(3(3(x1)))))))))))))))))) (139)
2(3(3(3(2(1(3(0(3(0(1(3(0(3(1(3(0(3(x1)))))))))))))))))) 0(0(2(3(3(3(3(0(3(2(3(3(3(1(1(1(0(3(x1)))))))))))))))))) (140)
3(2(3(2(3(1(3(0(2(2(1(2(1(3(2(3(0(3(x1)))))))))))))))))) 3(0(3(3(2(2(0(3(1(3(1(1(2(2(3(2(2(3(x1)))))))))))))))))) (141)
1(3(2(1(3(2(2(1(3(1(1(3(1(1(3(0(1(3(x1)))))))))))))))))) 1(3(1(1(2(2(0(1(1(3(3(1(3(3(2(1(1(3(x1)))))))))))))))))) (142)
1(3(0(3(3(0(3(3(1(3(0(3(2(1(1(1(1(3(x1)))))))))))))))))) 2(3(3(1(3(3(3(0(3(0(1(1(0(1(1(1(3(3(x1)))))))))))))))))) (143)
1(2(1(0(1(0(2(1(3(0(0(0(3(1(3(1(1(3(x1)))))))))))))))))) 1(1(0(2(3(3(1(0(0(1(0(3(0(2(1(1(1(3(x1)))))))))))))))))) (144)
1(1(2(0(0(3(1(0(3(3(0(0(1(3(2(2(1(3(x1)))))))))))))))))) 1(1(1(1(0(0(2(2(1(3(0(3(3(2(0(0(3(3(x1)))))))))))))))))) (145)
2(2(1(0(2(1(3(3(1(1(3(2(2(3(3(2(1(3(x1)))))))))))))))))) 3(2(1(1(2(2(3(3(3(2(1(1(2(3(2(1(0(3(x1)))))))))))))))))) (146)
1(2(2(0(3(1(1(0(2(2(1(0(1(0(0(3(1(3(x1)))))))))))))))))) 1(1(0(0(3(0(2(0(2(0(1(1(1(3(2(2(1(3(x1)))))))))))))))))) (147)
3(1(2(1(3(2(3(1(1(3(0(0(3(0(0(3(1(3(x1)))))))))))))))))) 3(2(1(2(1(0(0(1(1(1(0(3(3(0(3(3(3(3(x1)))))))))))))))))) (148)
1(3(3(2(0(3(2(2(2(2(3(0(3(0(1(3(1(3(x1)))))))))))))))))) 1(2(3(2(2(3(2(1(1(0(0(3(3(3(3(0(2(3(x1)))))))))))))))))) (149)
0(1(0(0(2(1(0(2(3(0(0(3(3(0(1(3(1(3(x1)))))))))))))))))) 0(0(3(2(0(0(1(1(0(3(1(0(0(3(3(1(2(3(x1)))))))))))))))))) (150)
3(2(2(1(0(1(3(2(3(0(2(2(3(3(1(3(1(3(x1)))))))))))))))))) 3(2(2(1(3(0(3(2(1(1(2(3(0(1(3(2(3(3(x1)))))))))))))))))) (151)
2(2(0(2(0(0(2(3(2(3(1(0(1(3(2(3(1(3(x1)))))))))))))))))) 0(2(2(0(3(2(1(2(0(0(3(1(2(1(2(3(3(3(x1)))))))))))))))))) (152)
3(3(3(2(2(2(3(1(3(3(0(3(2(3(2(3(1(3(x1)))))))))))))))))) 3(3(3(1(0(2(3(3(3(3(3(3(2(2(2(1(2(3(x1)))))))))))))))))) (153)
1(1(2(0(3(0(3(1(2(2(2(2(3(1(3(0(2(3(x1)))))))))))))))))) 2(1(2(3(1(0(3(2(3(3(0(1(2(0(1(2(2(3(x1)))))))))))))))))) (154)
3(3(2(3(3(3(0(3(1(3(3(0(0(3(3(3(2(3(x1)))))))))))))))))) 3(3(3(1(3(3(3(0(2(0(3(3(3(3(0(3(2(3(x1)))))))))))))))))) (155)
3(0(3(0(3(2(3(1(3(3(2(2(1(3(3(3(2(3(x1)))))))))))))))))) 1(1(0(2(2(3(3(3(3(0(3(2(2(3(3(3(3(3(x1)))))))))))))))))) (156)
2(3(0(1(0(2(2(2(3(3(1(0(3(0(1(2(3(3(x1)))))))))))))))))) 2(3(0(1(1(0(0(2(3(0(2(1(2(2(3(3(3(3(x1)))))))))))))))))) (157)
2(0(3(0(3(1(0(0(3(1(2(2(2(2(1(2(3(3(x1)))))))))))))))))) 2(1(1(0(0(0(3(3(1(2(2(0(3(2(2(2(3(3(x1)))))))))))))))))) (158)
1(3(2(0(1(2(2(1(3(3(0(2(1(0(3(2(3(3(x1)))))))))))))))))) 2(3(1(2(0(3(3(2(0(3(2(2(3(1(1(1(0(3(x1)))))))))))))))))) (159)
0(2(1(1(1(3(1(0(3(1(2(2(1(3(1(3(3(3(x1)))))))))))))))))) 0(1(1(0(2(3(1(3(1(3(1(2(1(1(3(2(3(3(x1)))))))))))))))))) (160)

1.1 Closure Under Flat Contexts

Using the flat contexts

{2(), 1(), 3(), 0()}

We obtain the transformed TRS

There are 146 ruless (increase limit for explicit display).

1.1.1 Semantic Labeling

Root-labeling is applied.

We obtain the labeled TRS

There are 584 ruless (increase limit for explicit display).

1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[22(x1)] = 1 · x1 + 23
[21(x1)] = 1 · x1 + 23
[13(x1)] = 1 · x1
[32(x1)] = 1 · x1 + 36
[20(x1)] = 1 · x1
[02(x1)] = 1 · x1 + 18
[11(x1)] = 1 · x1
[10(x1)] = 1 · x1
[00(x1)] = 1 · x1
[03(x1)] = 1 · x1 + 8
[30(x1)] = 1 · x1 + 6
[23(x1)] = 1 · x1
[31(x1)] = 1 · x1 + 36
[01(x1)] = 1 · x1 + 18
[12(x1)] = 1 · x1
[33(x1)] = 1 · x1
all of the following rules can be deleted.

There are 544 ruless (increase limit for explicit display).

1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[00(x1)] = 1 · x1
[02(x1)] = 1 · x1
[22(x1)] = 1 · x1
[21(x1)] = 1 · x1
[13(x1)] = 1 · x1
[31(x1)] = 1 · x1
[11(x1)] = 1 · x1 + 1
[10(x1)] = 1 · x1
[01(x1)] = 1 · x1
[12(x1)] = 1 · x1 + 1
[23(x1)] = 1 · x1 + 1
[32(x1)] = 1 · x1
[30(x1)] = 1 · x1 + 1
[20(x1)] = 1 · x1
[03(x1)] = 1 · x1
[33(x1)] = 1 · x1 + 2
all of the following rules can be deleted.
00(00(02(22(21(13(31(11(10(01(12(22(23(32(23(30(01(12(x1)))))))))))))))))) 01(11(11(12(20(03(32(20(02(20(03(32(22(20(01(13(31(12(x1)))))))))))))))))) (313)
00(00(02(22(21(13(31(11(10(01(12(22(23(32(23(30(01(11(x1)))))))))))))))))) 01(11(11(12(20(03(32(20(02(20(03(32(22(20(01(13(31(11(x1)))))))))))))))))) (314)
00(00(02(22(21(13(31(11(10(01(12(22(23(32(23(30(01(13(x1)))))))))))))))))) 01(11(11(12(20(03(32(20(02(20(03(32(22(20(01(13(31(13(x1)))))))))))))))))) (315)
00(00(02(22(21(13(31(11(10(01(12(22(23(32(23(30(01(10(x1)))))))))))))))))) 01(11(11(12(20(03(32(20(02(20(03(32(22(20(01(13(31(10(x1)))))))))))))))))) (316)

1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[02(x1)] = 1 · x1
[21(x1)] = 1 · x1
[11(x1)] = 1 · x1
[13(x1)] = 1 · x1
[31(x1)] = 1 · x1
[10(x1)] = 1 · x1
[03(x1)] = 1 · x1
[12(x1)] = 1 · x1
[22(x1)] = 1 · x1
[33(x1)] = 1 · x1 + 1
[32(x1)] = 1 · x1
[01(x1)] = 1 · x1
[23(x1)] = 1 · x1
[30(x1)] = 1 · x1
[20(x1)] = 1 · x1 + 1
[00(x1)] = 1 · x1 + 1
all of the following rules can be deleted.
02(21(11(11(13(31(10(03(31(12(22(21(13(31(13(33(33(32(x1)))))))))))))))))) 01(11(10(02(23(31(13(31(13(31(12(21(11(13(32(23(33(32(x1)))))))))))))))))) (477)
02(21(11(11(13(31(10(03(31(12(22(21(13(31(13(33(33(31(x1)))))))))))))))))) 01(11(10(02(23(31(13(31(13(31(12(21(11(13(32(23(33(31(x1)))))))))))))))))) (478)
02(21(11(11(13(31(10(03(31(12(22(21(13(31(13(33(33(33(x1)))))))))))))))))) 01(11(10(02(23(31(13(31(13(31(12(21(11(13(32(23(33(33(x1)))))))))))))))))) (479)
02(21(11(11(13(31(10(03(31(12(22(21(13(31(13(33(33(30(x1)))))))))))))))))) 01(11(10(02(23(31(13(31(13(31(12(21(11(13(32(23(33(30(x1)))))))))))))))))) (480)

1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[21(x1)] = 1 · x1
[10(x1)] = 1 · x1 + 1
[02(x1)] = 1 · x1
[22(x1)] = 1 · x1
[20(x1)] = 1 · x1
[12(x1)] = 1 · x1
[13(x1)] = 1 · x1
[33(x1)] = 1 · x1
[30(x1)] = 1 · x1
[01(x1)] = 1 · x1
[11(x1)] = 1 · x1
[00(x1)] = 1 · x1
[23(x1)] = 1 · x1
[31(x1)] = 1 · x1
[32(x1)] = 1 · x1
[03(x1)] = 1 · x1
all of the following rules can be deleted.
21(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(12(x1))))))))))))))))))) 22(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(12(x1))))))))))))))))))) (577)
21(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(11(x1))))))))))))))))))) 22(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(11(x1))))))))))))))))))) (578)
21(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(13(x1))))))))))))))))))) 22(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(13(x1))))))))))))))))))) (579)
21(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(10(x1))))))))))))))))))) 22(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(10(x1))))))))))))))))))) (580)
11(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(12(x1))))))))))))))))))) 12(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(12(x1))))))))))))))))))) (581)
11(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(11(x1))))))))))))))))))) 12(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(11(x1))))))))))))))))))) (582)
11(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(13(x1))))))))))))))))))) 12(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(13(x1))))))))))))))))))) (583)
11(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(10(x1))))))))))))))))))) 12(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(10(x1))))))))))))))))))) (584)
31(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(12(x1))))))))))))))))))) 32(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(12(x1))))))))))))))))))) (585)
31(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(11(x1))))))))))))))))))) 32(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(11(x1))))))))))))))))))) (586)
31(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(13(x1))))))))))))))))))) 32(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(13(x1))))))))))))))))))) (587)
31(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(10(x1))))))))))))))))))) 32(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(10(x1))))))))))))))))))) (588)
01(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(12(x1))))))))))))))))))) 02(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(12(x1))))))))))))))))))) (589)
01(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(11(x1))))))))))))))))))) 02(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(11(x1))))))))))))))))))) (590)
01(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(13(x1))))))))))))))))))) 02(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(13(x1))))))))))))))))))) (591)
01(10(02(22(20(02(21(12(21(10(02(21(13(33(30(01(10(01(10(x1))))))))))))))))))) 02(21(13(30(01(12(21(11(10(00(02(22(23(31(10(00(02(21(10(x1))))))))))))))))))) (592)

1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[21(x1)] = 1 · x1
[13(x1)] = 1 · x1
[32(x1)] = 1 · x1 + 1
[20(x1)] = 1 · x1
[01(x1)] = 1 · x1
[12(x1)] = 1 · x1 + 1
[22(x1)] = 1 · x1
[33(x1)] = 1 · x1
[30(x1)] = 1 · x1
[02(x1)] = 1 · x1 + 1
[10(x1)] = 1 · x1
[03(x1)] = 1 · x1
[23(x1)] = 1 · x1
[31(x1)] = 1 · x1
[11(x1)] = 1 · x1
all of the following rules can be deleted.
21(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(32(x1))))))))))))))))))) 22(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(32(x1))))))))))))))))))) (817)
21(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(31(x1))))))))))))))))))) 22(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(31(x1))))))))))))))))))) (818)
21(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(33(x1))))))))))))))))))) 22(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(33(x1))))))))))))))))))) (819)
21(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(30(x1))))))))))))))))))) 22(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(30(x1))))))))))))))))))) (820)

1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[11(x1)] = 1 · x1
[13(x1)] = 1 · x1
[32(x1)] = 1 · x1 + 1
[20(x1)] = 1 · x1
[01(x1)] = 1 · x1
[12(x1)] = 1 · x1
[22(x1)] = 1 · x1
[21(x1)] = 1 · x1
[33(x1)] = 1 · x1
[30(x1)] = 1 · x1
[02(x1)] = 1 · x1 + 1
[10(x1)] = 1 · x1
[03(x1)] = 1 · x1
[23(x1)] = 1 · x1
[31(x1)] = 1 · x1
all of the following rules can be deleted.
11(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(32(x1))))))))))))))))))) 12(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(32(x1))))))))))))))))))) (821)
11(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(31(x1))))))))))))))))))) 12(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(31(x1))))))))))))))))))) (822)
11(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(33(x1))))))))))))))))))) 12(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(33(x1))))))))))))))))))) (823)
11(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(30(x1))))))))))))))))))) 12(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(30(x1))))))))))))))))))) (824)

1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[31(x1)] = 1 · x1
[13(x1)] = 1 · x1
[32(x1)] = 1 · x1
[20(x1)] = 1 · x1
[01(x1)] = 1 · x1
[12(x1)] = 1 · x1
[22(x1)] = 1 · x1
[21(x1)] = 1 · x1
[33(x1)] = 1 · x1
[30(x1)] = 1 · x1
[02(x1)] = 1 · x1 + 1
[10(x1)] = 1 · x1
[03(x1)] = 1 · x1
[23(x1)] = 1 · x1
[11(x1)] = 1 · x1
all of the following rules can be deleted.
31(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(32(x1))))))))))))))))))) 32(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(32(x1))))))))))))))))))) (825)
31(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(31(x1))))))))))))))))))) 32(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(31(x1))))))))))))))))))) (826)
31(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(33(x1))))))))))))))))))) 32(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(33(x1))))))))))))))))))) (827)
31(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(30(x1))))))))))))))))))) 32(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(30(x1))))))))))))))))))) (828)

1.1.1.1.1.1.1.1.1.1.1 Rule Removal

Using the linear polynomial interpretation over the naturals
[01(x1)] = 1 · x1
[13(x1)] = 1 · x1
[32(x1)] = 1 · x1
[20(x1)] = 1 · x1
[12(x1)] = 1 · x1
[22(x1)] = 1 · x1
[21(x1)] = 1 · x1
[33(x1)] = 1 · x1
[30(x1)] = 1 · x1 + 1
[02(x1)] = 1 · x1
[10(x1)] = 1 · x1
[03(x1)] = 1 · x1
[23(x1)] = 1 · x1
[31(x1)] = 1 · x1
[11(x1)] = 1 · x1
all of the following rules can be deleted.
01(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(32(x1))))))))))))))))))) 02(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(32(x1))))))))))))))))))) (829)
01(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(31(x1))))))))))))))))))) 02(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(31(x1))))))))))))))))))) (830)
01(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(33(x1))))))))))))))))))) 02(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(33(x1))))))))))))))))))) (831)
01(13(32(20(01(12(22(21(13(33(30(02(21(10(03(32(23(33(30(x1))))))))))))))))))) 02(23(31(12(20(03(33(32(20(03(32(22(23(31(11(11(10(03(30(x1))))))))))))))))))) (832)

1.1.1.1.1.1.1.1.1.1.1.1 R is empty

There are no rules in the TRS. Hence, it is terminating.