The rewrite relation of the following TRS is considered.
There are 194 ruless (increase limit for explicit display).
There are 194 ruless (increase limit for explicit display).
{0(☐), 2(☐), 1(☐), 3(☐), 4(☐), 5(☐)}
We obtain the transformed TRSThere are 769 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 4614 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 + 1 |
[02(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 + 1 |
[04(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 + 1 |
[10(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 + 1 |
[43(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 + 1 |
[35(x1)] | = | 1 · x1 + 1 |
[50(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[41(x1)] | = | 1 · x1 |
There are 3861 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 + 1 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[15(x1)] | = | 1 · x1 + 1 |
[53(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 + 1 |
[10(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 + 1 |
[20(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[45(x1)] | = | 1 · x1 + 1 |
[41(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
There are 207 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 + 3 |
[05(x1)] | = | 1 · x1 + 14 |
[50(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 + 1 |
[15(x1)] | = | 1 · x1 + 1 |
[53(x1)] | = | 1 · x1 + 8 |
[30(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 + 1 |
[03(x1)] | = | 1 · x1 + 11 |
[04(x1)] | = | 1 · x1 + 4 |
[35(x1)] | = | 1 · x1 + 11 |
[10(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 + 1 |
[33(x1)] | = | 1 · x1 + 11 |
[34(x1)] | = | 1 · x1 + 1 |
[11(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[24(x1)] | = | 1 · x1 |
[14(x1)] | = | 1 · x1 + 2 |
[43(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 + 11 |
[20(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 + 8 |
[40(x1)] | = | 1 · x1 + 1 |
[45(x1)] | = | 1 · x1 + 7 |
[41(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 + 7 |
[12(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 + 4 |
[25(x1)] | = | 1 · x1 |
There are 395 ruless (increase limit for explicit display).
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 + 1 |
[31(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 + 1 |
[42(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[13(x1)] | = | 1 · x1 |
[40(x1)] | = | 1 · x1 |
[44(x1)] | = | 1 · x1 |
[43(x1)] | = | 1 · x1 |
20(03(35(53(32(x1))))) | → | 21(13(31(10(03(35(52(x1))))))) | (4907) |
10(03(35(53(32(x1))))) | → | 11(13(31(10(03(35(52(x1))))))) | (4913) |
50(03(35(53(32(x1))))) | → | 51(13(31(10(03(35(52(x1))))))) | (4931) |
40(03(35(53(32(x1))))) | → | 44(40(04(43(33(35(52(x1))))))) | (4997) |
20(00(03(35(53(34(x1)))))) | → | 22(20(03(35(53(30(04(x1))))))) | (5414) |
10(00(03(35(53(34(x1)))))) | → | 12(20(03(35(53(30(04(x1))))))) | (5420) |
50(00(03(35(53(34(x1)))))) | → | 52(20(03(35(53(30(04(x1))))))) | (5438) |
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 + 2 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 + 2 |
[10(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 + 2 |
[11(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 + 2 |
[05(x1)] | = | 1 · x1 + 1 |
[23(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[42(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
There are 102 ruless (increase limit for explicit display).
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 + 2 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 + 1 |
[52(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[30(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 + 2 |
[23(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
03(35(50(02(x1)))) | → | 01(10(03(35(52(x1))))) | (1169) |
03(35(50(01(x1)))) | → | 01(10(03(35(51(x1))))) | (1170) |
03(35(50(02(x1)))) | → | 01(11(10(03(35(52(x1)))))) | (1247) |
03(35(50(01(x1)))) | → | 01(11(10(03(35(51(x1)))))) | (1248) |
10(03(35(53(30(x1))))) | → | 12(25(55(53(30(03(30(x1))))))) | (4624) |
10(03(35(53(32(x1))))) | → | 12(25(55(53(30(03(32(x1))))))) | (4625) |
10(03(35(53(31(x1))))) | → | 12(25(55(53(30(03(31(x1))))))) | (4626) |
10(03(35(53(33(x1))))) | → | 12(25(55(53(30(03(33(x1))))))) | (4627) |
10(03(35(53(34(x1))))) | → | 12(25(55(53(30(03(34(x1))))))) | (4628) |
10(03(35(53(35(x1))))) | → | 12(25(55(53(30(03(35(x1))))))) | (4629) |
10(00(03(35(53(30(x1)))))) | → | 12(20(03(35(53(30(00(x1))))))) | (5416) |
[30(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 + 1 |
[00(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[04(x1)] | = | 1 · x1 |
[05(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[25(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
30(03(35(50(00(x1))))) | → | 35(52(23(30(00(00(x1)))))) | (1894) |
30(03(35(50(02(x1))))) | → | 35(52(23(30(00(02(x1)))))) | (1895) |
30(03(35(50(01(x1))))) | → | 35(52(23(30(00(01(x1)))))) | (1896) |
30(03(35(50(03(x1))))) | → | 35(52(23(30(00(03(x1)))))) | (1897) |
30(03(35(50(04(x1))))) | → | 35(52(23(30(00(04(x1)))))) | (1898) |
30(03(35(50(05(x1))))) | → | 35(52(23(30(00(05(x1)))))) | (1899) |
[30(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 |
[52(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 + 1 |
[25(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
20(03(35(53(30(x1))))) | → | 22(25(55(53(30(03(30(x1))))))) | (4618) |
20(03(35(53(32(x1))))) | → | 22(25(55(53(30(03(32(x1))))))) | (4619) |
20(03(35(53(31(x1))))) | → | 22(25(55(53(30(03(31(x1))))))) | (4620) |
20(03(35(53(33(x1))))) | → | 22(25(55(53(30(03(33(x1))))))) | (4621) |
20(03(35(53(34(x1))))) | → | 22(25(55(53(30(03(34(x1))))))) | (4622) |
20(03(35(53(35(x1))))) | → | 22(25(55(53(30(03(35(x1))))))) | (4623) |
[30(x1)] | = | 1 · x1 |
[03(x1)] | = | 1 · x1 |
[35(x1)] | = | 1 · x1 |
[53(x1)] | = | 1 · x1 + 1 |
[52(x1)] | = | 1 · x1 |
[23(x1)] | = | 1 · x1 |
[32(x1)] | = | 1 · x1 |
[31(x1)] | = | 1 · x1 |
[33(x1)] | = | 1 · x1 |
[34(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[50(x1)] | = | 1 · x1 |
[51(x1)] | = | 1 · x1 |
[54(x1)] | = | 1 · x1 |
[55(x1)] | = | 1 · x1 |
30(03(35(53(30(x1))))) | → | 35(52(23(30(03(30(x1)))))) | (4054) |
30(03(35(53(32(x1))))) | → | 35(52(23(30(03(32(x1)))))) | (4055) |
30(03(35(53(31(x1))))) | → | 35(52(23(30(03(31(x1)))))) | (4056) |
30(03(35(53(33(x1))))) | → | 35(52(23(30(03(33(x1)))))) | (4057) |
30(03(35(53(34(x1))))) | → | 35(52(23(30(03(34(x1)))))) | (4058) |
30(03(35(53(35(x1))))) | → | 35(52(23(30(03(35(x1)))))) | (4059) |
30(03(35(53(30(x1))))) | → | 35(52(22(23(30(03(30(x1))))))) | (4522) |
30(03(35(53(32(x1))))) | → | 35(52(22(23(30(03(32(x1))))))) | (4523) |
30(03(35(53(31(x1))))) | → | 35(52(22(23(30(03(31(x1))))))) | (4524) |
30(03(35(53(33(x1))))) | → | 35(52(22(23(30(03(33(x1))))))) | (4525) |
30(03(35(53(34(x1))))) | → | 35(52(22(23(30(03(34(x1))))))) | (4526) |
30(03(35(53(35(x1))))) | → | 35(52(22(23(30(03(35(x1))))))) | (4527) |
30(03(35(53(35(50(x1)))))) | → | 35(52(23(30(03(35(50(x1))))))) | (5674) |
30(03(35(53(35(52(x1)))))) | → | 35(52(23(30(03(35(52(x1))))))) | (5675) |
30(03(35(53(35(51(x1)))))) | → | 35(52(23(30(03(35(51(x1))))))) | (5676) |
30(03(35(53(35(53(x1)))))) | → | 35(52(23(30(03(35(53(x1))))))) | (5677) |
30(03(35(53(35(54(x1)))))) | → | 35(52(23(30(03(35(54(x1))))))) | (5678) |
30(03(35(53(35(55(x1)))))) | → | 35(52(23(30(03(35(55(x1))))))) | (5679) |
The TRS is overlay and locally confluent:
10Hence, it suffices to show innermost termination in the following.
20#(00(03(35(53(30(x1)))))) | → | 20#(03(35(53(30(00(x1)))))) | (5692) |
We restrict the rewrite rules to the following usable rules of the DP problem.
There are no rules.
We restrict the innermost strategy to the following left hand sides.
There are no lhss.
[20#(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 |
[03(x1)] | = | 0 |
[35(x1)] | = | 0 |
[53(x1)] | = | 0 |
[30(x1)] | = | 1 · x1 |
20#(00(03(35(53(30(x1)))))) | → | 20#(03(35(53(30(00(x1)))))) | (5692) |
There are no pairs anymore.