The rewrite relation of the following TRS is considered.
| 0(0(1(0(x1)))) | → | 0(2(0(0(3(1(x1)))))) | (1) |
| 0(0(1(0(x1)))) | → | 0(2(0(4(1(0(x1)))))) | (2) |
| 0(0(1(0(x1)))) | → | 2(0(0(0(2(1(x1)))))) | (3) |
| 3(0(1(0(x1)))) | → | 0(2(3(1(0(x1))))) | (4) |
| 3(0(1(0(x1)))) | → | 3(1(0(0(2(x1))))) | (5) |
| 3(0(1(0(x1)))) | → | 3(1(1(0(0(x1))))) | (6) |
| 3(0(1(0(x1)))) | → | 3(1(2(0(0(x1))))) | (7) |
| 3(0(1(0(x1)))) | → | 3(1(5(0(0(x1))))) | (8) |
| 3(0(1(0(x1)))) | → | 3(5(1(0(0(x1))))) | (9) |
| 3(0(1(0(x1)))) | → | 5(0(3(1(0(x1))))) | (10) |
| 3(0(1(0(x1)))) | → | 2(0(2(3(1(0(x1)))))) | (11) |
| 3(0(1(0(x1)))) | → | 2(2(0(3(1(0(x1)))))) | (12) |
| 3(0(1(0(x1)))) | → | 3(1(5(0(0(0(x1)))))) | (13) |
| 3(0(1(0(x1)))) | → | 3(1(5(0(2(0(x1)))))) | (14) |
| 3(0(1(0(x1)))) | → | 3(1(5(1(0(0(x1)))))) | (15) |
| 3(0(1(0(x1)))) | → | 3(1(5(2(0(0(x1)))))) | (16) |
| 3(0(1(0(x1)))) | → | 3(1(5(5(0(0(x1)))))) | (17) |
| 3(0(1(0(x1)))) | → | 3(2(2(1(0(0(x1)))))) | (18) |
| 3(0(1(0(x1)))) | → | 3(5(1(0(0(2(x1)))))) | (19) |
| 3(0(1(0(x1)))) | → | 3(5(1(5(0(0(x1)))))) | (20) |
| 3(0(1(0(x1)))) | → | 5(1(1(3(0(0(x1)))))) | (21) |
| 3(4(1(0(x1)))) | → | 3(1(2(4(0(x1))))) | (22) |
| 3(4(1(0(x1)))) | → | 3(1(4(0(2(x1))))) | (23) |
| 3(4(1(0(x1)))) | → | 3(1(5(4(0(x1))))) | (24) |
| 3(4(1(0(x1)))) | → | 3(4(2(1(0(x1))))) | (25) |
| 3(4(1(0(x1)))) | → | 3(1(1(5(4(0(x1)))))) | (26) |
| 3(4(1(0(x1)))) | → | 3(1(2(1(4(0(x1)))))) | (27) |
| 3(4(1(0(x1)))) | → | 3(1(2(5(4(0(x1)))))) | (28) |
| 3(4(1(0(x1)))) | → | 3(1(4(2(0(2(x1)))))) | (29) |
| 3(4(1(0(x1)))) | → | 3(1(5(4(0(2(x1)))))) | (30) |
| 3(4(1(0(x1)))) | → | 3(1(5(5(4(0(x1)))))) | (31) |
| 3(4(1(0(x1)))) | → | 3(4(2(1(1(0(x1)))))) | (32) |
| 3(4(1(0(x1)))) | → | 3(4(5(1(2(0(x1)))))) | (33) |
| 0(1(4(1(0(x1))))) | → | 0(1(1(4(0(2(x1)))))) | (34) |
| 0(2(0(1(0(x1))))) | → | 0(2(0(0(3(1(x1)))))) | (35) |
| 0(2(0(1(0(x1))))) | → | 2(0(0(0(3(1(x1)))))) | (36) |
| 0(3(0(1(0(x1))))) | → | 0(0(3(1(3(0(x1)))))) | (37) |
| 0(3(0(1(0(x1))))) | → | 0(0(3(3(1(0(x1)))))) | (38) |
| 0(3(0(1(0(x1))))) | → | 0(0(3(5(1(0(x1)))))) | (39) |
| 0(3(0(1(0(x1))))) | → | 2(0(0(3(1(0(x1)))))) | (40) |
| 0(3(4(1(0(x1))))) | → | 0(2(0(4(3(1(x1)))))) | (41) |
| 0(5(0(1(0(x1))))) | → | 0(0(0(1(5(2(x1)))))) | (42) |
| 0(5(0(1(0(x1))))) | → | 0(0(1(5(1(0(x1)))))) | (43) |
| 0(5(0(1(0(x1))))) | → | 0(2(0(0(1(5(x1)))))) | (44) |
| 3(0(1(0(0(x1))))) | → | 3(1(3(0(0(0(x1)))))) | (45) |
| 3(0(1(1(0(x1))))) | → | 3(1(0(1(2(0(x1)))))) | (46) |
| 3(0(2(1(0(x1))))) | → | 2(0(3(1(1(0(x1)))))) | (47) |
| 3(0(2(1(0(x1))))) | → | 2(3(1(5(0(0(x1)))))) | (48) |
| 3(0(2(1(0(x1))))) | → | 3(1(2(0(1(0(x1)))))) | (49) |
| 3(0(2(1(0(x1))))) | → | 3(1(2(0(5(0(x1)))))) | (50) |
| 3(0(5(1(0(x1))))) | → | 3(1(5(2(0(0(x1)))))) | (51) |
| 3(1(0(1(0(x1))))) | → | 2(0(3(1(1(0(x1)))))) | (52) |
| 3(1(0(1(0(x1))))) | → | 3(1(1(1(0(0(x1)))))) | (53) |
| 3(1(0(1(0(x1))))) | → | 3(1(2(1(0(0(x1)))))) | (54) |
| 3(1(4(1(0(x1))))) | → | 3(1(2(1(4(0(x1)))))) | (55) |
| 3(1(4(1(0(x1))))) | → | 3(1(5(1(4(0(x1)))))) | (56) |
| 3(2(0(1(0(x1))))) | → | 0(2(3(1(5(0(x1)))))) | (57) |
| 3(2(0(1(0(x1))))) | → | 2(0(3(1(1(0(x1)))))) | (58) |
| 3(3(0(1(0(x1))))) | → | 3(1(2(0(3(0(x1)))))) | (59) |
| 3(3(0(1(0(x1))))) | → | 3(1(2(3(0(0(x1)))))) | (60) |
| 3(3(4(1(0(x1))))) | → | 3(1(2(4(3(0(x1)))))) | (61) |
| 3(3(4(1(0(x1))))) | → | 3(1(3(4(0(2(x1)))))) | (62) |
| 3(3(4(1(0(x1))))) | → | 3(1(4(3(1(0(x1)))))) | (63) |
| 3(4(0(1(0(x1))))) | → | 0(2(4(1(3(0(x1)))))) | (64) |
| 3(4(0(1(0(x1))))) | → | 3(1(4(0(0(2(x1)))))) | (65) |
| 3(4(0(1(0(x1))))) | → | 3(2(0(4(1(0(x1)))))) | (66) |
| 3(4(4(1(0(x1))))) | → | 3(1(1(4(4(0(x1)))))) | (67) |
| 0(1(0(0(x1)))) | → | 1(3(0(0(2(0(x1)))))) | (68) |
| 0(1(0(0(x1)))) | → | 0(1(4(0(2(0(x1)))))) | (69) |
| 0(1(0(0(x1)))) | → | 1(2(0(0(0(2(x1)))))) | (70) |
| 0(1(0(3(x1)))) | → | 0(1(3(2(0(x1))))) | (71) |
| 0(1(0(3(x1)))) | → | 2(0(0(1(3(x1))))) | (72) |
| 0(1(0(3(x1)))) | → | 0(0(1(1(3(x1))))) | (73) |
| 0(1(0(3(x1)))) | → | 0(0(2(1(3(x1))))) | (74) |
| 0(1(0(3(x1)))) | → | 0(0(5(1(3(x1))))) | (75) |
| 0(1(0(3(x1)))) | → | 0(0(1(5(3(x1))))) | (76) |
| 0(1(0(3(x1)))) | → | 0(1(3(0(5(x1))))) | (77) |
| 0(1(0(3(x1)))) | → | 0(1(3(2(0(2(x1)))))) | (78) |
| 0(1(0(3(x1)))) | → | 0(1(3(0(2(2(x1)))))) | (79) |
| 0(1(0(3(x1)))) | → | 0(0(0(5(1(3(x1)))))) | (80) |
| 0(1(0(3(x1)))) | → | 0(2(0(5(1(3(x1)))))) | (81) |
| 0(1(0(3(x1)))) | → | 0(0(1(5(1(3(x1)))))) | (82) |
| 0(1(0(3(x1)))) | → | 0(0(2(5(1(3(x1)))))) | (83) |
| 0(1(0(3(x1)))) | → | 0(0(5(5(1(3(x1)))))) | (84) |
| 0(1(0(3(x1)))) | → | 0(0(1(2(2(3(x1)))))) | (85) |
| 0(1(0(3(x1)))) | → | 2(0(0(1(5(3(x1)))))) | (86) |
| 0(1(0(3(x1)))) | → | 0(0(5(1(5(3(x1)))))) | (87) |
| 0(1(0(3(x1)))) | → | 0(0(3(1(1(5(x1)))))) | (88) |
| 0(1(4(3(x1)))) | → | 0(4(2(1(3(x1))))) | (89) |
| 0(1(4(3(x1)))) | → | 2(0(4(1(3(x1))))) | (90) |
| 0(1(4(3(x1)))) | → | 0(4(5(1(3(x1))))) | (91) |
| 0(1(4(3(x1)))) | → | 0(1(2(4(3(x1))))) | (92) |
| 0(1(4(3(x1)))) | → | 0(4(5(1(1(3(x1)))))) | (93) |
| 0(1(4(3(x1)))) | → | 0(4(1(2(1(3(x1)))))) | (94) |
| 0(1(4(3(x1)))) | → | 0(4(5(2(1(3(x1)))))) | (95) |
| 0(1(4(3(x1)))) | → | 2(0(2(4(1(3(x1)))))) | (96) |
| 0(1(4(3(x1)))) | → | 2(0(4(5(1(3(x1)))))) | (97) |
| 0(1(4(3(x1)))) | → | 0(4(5(5(1(3(x1)))))) | (98) |
| 0(1(4(3(x1)))) | → | 0(1(1(2(4(3(x1)))))) | (99) |
| 0(1(4(3(x1)))) | → | 0(2(1(5(4(3(x1)))))) | (100) |
| 0(1(4(1(0(x1))))) | → | 2(0(4(1(1(0(x1)))))) | (101) |
| 0(1(0(2(0(x1))))) | → | 1(3(0(0(2(0(x1)))))) | (102) |
| 0(1(0(2(0(x1))))) | → | 1(3(0(0(0(2(x1)))))) | (103) |
| 0(1(0(3(0(x1))))) | → | 0(3(1(3(0(0(x1)))))) | (104) |
| 0(1(0(3(0(x1))))) | → | 0(1(3(3(0(0(x1)))))) | (105) |
| 0(1(0(3(0(x1))))) | → | 0(1(5(3(0(0(x1)))))) | (106) |
| 0(1(0(3(0(x1))))) | → | 0(1(3(0(0(2(x1)))))) | (107) |
| 0(1(4(3(0(x1))))) | → | 1(3(4(0(2(0(x1)))))) | (108) |
| 0(1(0(5(0(x1))))) | → | 2(5(1(0(0(0(x1)))))) | (109) |
| 0(1(0(5(0(x1))))) | → | 0(1(5(1(0(0(x1)))))) | (110) |
| 0(1(0(5(0(x1))))) | → | 5(1(0(0(2(0(x1)))))) | (111) |
| 0(0(1(0(3(x1))))) | → | 0(0(0(3(1(3(x1)))))) | (112) |
| 0(1(1(0(3(x1))))) | → | 0(2(1(0(1(3(x1)))))) | (113) |
| 0(1(2(0(3(x1))))) | → | 0(1(1(3(0(2(x1)))))) | (114) |
| 0(1(2(0(3(x1))))) | → | 0(0(5(1(3(2(x1)))))) | (115) |
| 0(1(2(0(3(x1))))) | → | 0(1(0(2(1(3(x1)))))) | (116) |
| 0(1(2(0(3(x1))))) | → | 0(5(0(2(1(3(x1)))))) | (117) |
| 0(1(5(0(3(x1))))) | → | 0(0(2(5(1(3(x1)))))) | (118) |
| 0(1(0(1(3(x1))))) | → | 0(1(1(3(0(2(x1)))))) | (119) |
| 0(1(0(1(3(x1))))) | → | 0(0(1(1(1(3(x1)))))) | (120) |
| 0(1(0(1(3(x1))))) | → | 0(0(1(2(1(3(x1)))))) | (121) |
| 0(1(4(1(3(x1))))) | → | 0(4(1(2(1(3(x1)))))) | (122) |
| 0(1(4(1(3(x1))))) | → | 0(4(1(5(1(3(x1)))))) | (123) |
| 0(1(0(2(3(x1))))) | → | 0(5(1(3(2(0(x1)))))) | (124) |
| 0(1(0(2(3(x1))))) | → | 0(1(1(3(0(2(x1)))))) | (125) |
| 0(1(0(3(3(x1))))) | → | 0(3(0(2(1(3(x1)))))) | (126) |
| 0(1(0(3(3(x1))))) | → | 0(0(3(2(1(3(x1)))))) | (127) |
| 0(1(4(3(3(x1))))) | → | 0(3(4(2(1(3(x1)))))) | (128) |
| 0(1(4(3(3(x1))))) | → | 2(0(4(3(1(3(x1)))))) | (129) |
| 0(1(4(3(3(x1))))) | → | 0(1(3(4(1(3(x1)))))) | (130) |
| 0(1(0(4(3(x1))))) | → | 0(3(1(4(2(0(x1)))))) | (131) |
| 0(1(0(4(3(x1))))) | → | 2(0(0(4(1(3(x1)))))) | (132) |
| 0(1(0(4(3(x1))))) | → | 0(1(4(0(2(3(x1)))))) | (133) |
| 0(1(4(4(3(x1))))) | → | 0(4(4(1(1(3(x1)))))) | (134) |
{0(☐), 1(☐), 3(☐), 2(☐), 4(☐), 5(☐)}
We obtain the transformed TRSThere are 142 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 852 ruless (increase limit for explicit display).
| [01(x1)] | = | 1 · x1 + 4 |
| [10(x1)] | = | 1 · x1 + 4 |
| [00(x1)] | = | 1 · x1 + 4 |
| [14(x1)] | = | 1 · x1 + 6 |
| [40(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 + 2 |
| [04(x1)] | = | 1 · x1 + 6 |
| [03(x1)] | = | 1 · x1 + 2 |
| [05(x1)] | = | 1 · x1 + 2 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 + 4 |
| [33(x1)] | = | 1 · x1 + 1 |
| [35(x1)] | = | 1 · x1 + 2 |
| [11(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 + 2 |
| [54(x1)] | = | 1 · x1 + 7 |
| [52(x1)] | = | 1 · x1 + 2 |
| [55(x1)] | = | 1 · x1 + 4 |
| [24(x1)] | = | 1 · x1 + 6 |
| [22(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 + 2 |
| [44(x1)] | = | 1 · x1 |
There are 672 ruless (increase limit for explicit display).
| [01(x1)] | = | 1 · x1 + 3 |
| [10(x1)] | = | 1 · x1 + 2 |
| [00(x1)] | = | 1 · x1 + 3 |
| [14(x1)] | = | 1 · x1 + 2 |
| [40(x1)] | = | 1 · x1 + 1 |
| [02(x1)] | = | 1 · x1 + 1 |
| [20(x1)] | = | 1 · x1 + 1 |
| [04(x1)] | = | 1 · x1 + 3 |
| [03(x1)] | = | 1 · x1 + 2 |
| [05(x1)] | = | 1 · x1 + 1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 + 1 |
| [55(x1)] | = | 1 · x1 + 3 |
| [43(x1)] | = | 1 · x1 + 1 |
| [12(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 + 1 |
| [45(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 + 2 |
| [15(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 + 1 |
| [41(x1)] | = | 1 · x1 + 2 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 + 2 |
| [53(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| 01(14(43(30(x1)))) | → | 01(12(24(43(30(x1))))) | (339) |
| 01(14(43(31(x1)))) | → | 01(12(24(43(31(x1))))) | (340) |
| 01(14(43(34(x1)))) | → | 01(12(24(43(34(x1))))) | (341) |
| 01(14(43(32(x1)))) | → | 01(12(24(43(32(x1))))) | (342) |
| 01(14(43(33(x1)))) | → | 01(12(24(43(33(x1))))) | (343) |
| 01(14(43(35(x1)))) | → | 01(12(24(43(35(x1))))) | (344) |
| 01(12(20(03(30(x1))))) | → | 00(05(51(13(32(20(x1)))))) | (429) |
| 01(12(20(03(34(x1))))) | → | 00(05(51(13(32(24(x1)))))) | (431) |
| 01(10(02(23(30(x1))))) | → | 05(51(13(32(20(00(x1)))))) | (483) |
| 01(10(02(23(31(x1))))) | → | 05(51(13(32(20(01(x1)))))) | (484) |
| 40(01(10(00(04(x1))))) | → | 41(12(20(00(00(02(24(x1))))))) | (599) |
| 30(01(14(43(30(x1))))) | → | 32(20(02(24(41(13(30(x1))))))) | (729) |
| 30(01(14(43(31(x1))))) | → | 32(20(02(24(41(13(31(x1))))))) | (730) |
| 30(01(14(43(34(x1))))) | → | 32(20(02(24(41(13(34(x1))))))) | (731) |
| 30(01(14(43(32(x1))))) | → | 32(20(02(24(41(13(32(x1))))))) | (732) |
| 30(01(14(43(33(x1))))) | → | 32(20(02(24(41(13(33(x1))))))) | (733) |
| 30(01(14(43(35(x1))))) | → | 32(20(02(24(41(13(35(x1))))))) | (734) |
| 40(01(14(43(30(x1))))) | → | 42(20(02(24(41(13(30(x1))))))) | (741) |
| 40(01(14(43(31(x1))))) | → | 42(20(02(24(41(13(31(x1))))))) | (742) |
| 40(01(14(43(34(x1))))) | → | 42(20(02(24(41(13(34(x1))))))) | (743) |
| 40(01(14(43(32(x1))))) | → | 42(20(02(24(41(13(32(x1))))))) | (744) |
| 40(01(14(43(33(x1))))) | → | 42(20(02(24(41(13(33(x1))))))) | (745) |
| 40(01(14(43(35(x1))))) | → | 42(20(02(24(41(13(35(x1))))))) | (746) |
| 50(01(14(43(30(x1))))) | → | 52(20(02(24(41(13(30(x1))))))) | (747) |
| 50(01(14(43(31(x1))))) | → | 52(20(02(24(41(13(31(x1))))))) | (748) |
| 50(01(14(43(34(x1))))) | → | 52(20(02(24(41(13(34(x1))))))) | (749) |
| 50(01(14(43(32(x1))))) | → | 52(20(02(24(41(13(32(x1))))))) | (750) |
| 50(01(14(43(33(x1))))) | → | 52(20(02(24(41(13(33(x1))))))) | (751) |
| 50(01(14(43(35(x1))))) | → | 52(20(02(24(41(13(35(x1))))))) | (752) |
| 40(01(10(02(20(04(x1)))))) | → | 41(13(30(00(00(02(24(x1))))))) | (887) |
| [01(x1)] | = | 1 · x1 + 1 |
| [10(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 + 1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 + 1 |
| [55(x1)] | = | 1 · x1 + 1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 + 1 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 + 1 |
| 01(10(03(30(x1)))) | → | 00(00(05(51(13(30(x1)))))) | (279) |
| 01(10(03(31(x1)))) | → | 00(00(05(51(13(31(x1)))))) | (280) |
| 01(10(03(34(x1)))) | → | 00(00(05(51(13(34(x1)))))) | (281) |
| 01(10(03(32(x1)))) | → | 00(00(05(51(13(32(x1)))))) | (282) |
| 01(10(03(33(x1)))) | → | 00(00(05(51(13(33(x1)))))) | (283) |
| 01(10(03(35(x1)))) | → | 00(00(05(51(13(35(x1)))))) | (284) |
| [01(x1)] | = | 1 · x1 + 2 |
| [10(x1)] | = | 1 · x1 + 2 |
| [00(x1)] | = | 1 · x1 + 2 |
| [14(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 + 1 |
| [04(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 + 1 |
| [05(x1)] | = | 1 · x1 + 2 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 + 1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 + 1 |
| [43(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 + 1 |
| [11(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 + 1 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| 01(10(00(00(x1)))) | → | 01(14(40(02(20(00(x1)))))) | (225) |
| 01(10(00(01(x1)))) | → | 01(14(40(02(20(01(x1)))))) | (226) |
| 01(10(00(04(x1)))) | → | 01(14(40(02(20(04(x1)))))) | (227) |
| 01(10(00(02(x1)))) | → | 01(14(40(02(20(02(x1)))))) | (228) |
| 01(10(00(03(x1)))) | → | 01(14(40(02(20(03(x1)))))) | (229) |
| 01(10(00(05(x1)))) | → | 01(14(40(02(20(05(x1)))))) | (230) |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 + 1 |
| [43(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 1 |
| [45(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| 01(14(43(30(x1)))) | → | 01(11(12(24(43(30(x1)))))) | (369) |
| 01(14(43(31(x1)))) | → | 01(11(12(24(43(31(x1)))))) | (370) |
| 01(14(43(34(x1)))) | → | 01(11(12(24(43(34(x1)))))) | (371) |
| 01(14(43(32(x1)))) | → | 01(11(12(24(43(32(x1)))))) | (372) |
| 01(14(43(33(x1)))) | → | 01(11(12(24(43(33(x1)))))) | (373) |
| 01(14(43(35(x1)))) | → | 01(11(12(24(43(35(x1)))))) | (374) |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 + 1 |
| [04(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 + 1 |
| [40(x1)] | = | 1 · x1 + 1 |
| [41(x1)] | = | 1 · x1 + 1 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| 01(14(43(30(x1)))) | → | 04(45(55(51(13(30(x1)))))) | (363) |
| 01(14(43(31(x1)))) | → | 04(45(55(51(13(31(x1)))))) | (364) |
| 01(14(43(34(x1)))) | → | 04(45(55(51(13(34(x1)))))) | (365) |
| 01(14(43(32(x1)))) | → | 04(45(55(51(13(32(x1)))))) | (366) |
| 01(14(43(33(x1)))) | → | 04(45(55(51(13(33(x1)))))) | (367) |
| 01(14(43(35(x1)))) | → | 04(45(55(51(13(35(x1)))))) | (368) |
| [01(x1)] | = | 1 · x1 + 1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 + 1 |
| [05(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 + 1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 + 1 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| 30(01(10(05(50(00(x1)))))) | → | 32(25(51(10(00(00(00(x1))))))) | (945) |
| 30(01(10(05(50(01(x1)))))) | → | 32(25(51(10(00(00(01(x1))))))) | (946) |
| 30(01(10(05(50(04(x1)))))) | → | 32(25(51(10(00(00(04(x1))))))) | (947) |
| 30(01(10(05(50(02(x1)))))) | → | 32(25(51(10(00(00(02(x1))))))) | (948) |
| 30(01(10(05(50(03(x1)))))) | → | 32(25(51(10(00(00(03(x1))))))) | (949) |
| 30(01(10(05(50(05(x1)))))) | → | 32(25(51(10(00(00(05(x1))))))) | (950) |
| 40(01(10(05(50(00(x1)))))) | → | 42(25(51(10(00(00(00(x1))))))) | (957) |
| 40(01(10(05(50(01(x1)))))) | → | 42(25(51(10(00(00(01(x1))))))) | (958) |
| 40(01(10(05(50(04(x1)))))) | → | 42(25(51(10(00(00(04(x1))))))) | (959) |
| 40(01(10(05(50(02(x1)))))) | → | 42(25(51(10(00(00(02(x1))))))) | (960) |
| 40(01(10(05(50(03(x1)))))) | → | 42(25(51(10(00(00(03(x1))))))) | (961) |
| 40(01(10(05(50(05(x1)))))) | → | 42(25(51(10(00(00(05(x1))))))) | (962) |
| 50(01(10(05(50(00(x1)))))) | → | 52(25(51(10(00(00(00(x1))))))) | (963) |
| 50(01(10(05(50(01(x1)))))) | → | 52(25(51(10(00(00(01(x1))))))) | (964) |
| 50(01(10(05(50(04(x1)))))) | → | 52(25(51(10(00(00(04(x1))))))) | (965) |
| 50(01(10(05(50(02(x1)))))) | → | 52(25(51(10(00(00(02(x1))))))) | (966) |
| 50(01(10(05(50(03(x1)))))) | → | 52(25(51(10(00(00(03(x1))))))) | (967) |
| 50(01(10(05(50(05(x1)))))) | → | 52(25(51(10(00(00(05(x1))))))) | (968) |
| [01(x1)] | = | 1 · x1 + 1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 + 1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 + 1 |
| [31(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 + 1 |
| [15(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 1 |
| [02(x1)] | = | 1 · x1 + 1 |
| [12(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 + 1 |
| [53(x1)] | = | 1 · x1 |
| 01(10(03(30(x1)))) | → | 00(05(55(51(13(30(x1)))))) | (303) |
| 01(10(03(31(x1)))) | → | 00(05(55(51(13(31(x1)))))) | (304) |
| 01(10(03(34(x1)))) | → | 00(05(55(51(13(34(x1)))))) | (305) |
| 01(10(03(32(x1)))) | → | 00(05(55(51(13(32(x1)))))) | (306) |
| 01(10(03(33(x1)))) | → | 00(05(55(51(13(33(x1)))))) | (307) |
| 01(10(03(35(x1)))) | → | 00(05(55(51(13(35(x1)))))) | (308) |
| 50(01(10(05(50(00(x1)))))) | → | 55(51(10(00(02(20(00(x1))))))) | (999) |
| 50(01(10(05(50(01(x1)))))) | → | 55(51(10(00(02(20(01(x1))))))) | (1000) |
| 50(01(10(05(50(04(x1)))))) | → | 55(51(10(00(02(20(04(x1))))))) | (1001) |
| 50(01(10(05(50(02(x1)))))) | → | 55(51(10(00(02(20(02(x1))))))) | (1002) |
| 50(01(10(05(50(03(x1)))))) | → | 55(51(10(00(02(20(03(x1))))))) | (1003) |
| 50(01(10(05(50(05(x1)))))) | → | 55(51(10(00(02(20(05(x1))))))) | (1004) |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 + 1 |
| [50(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 + 1 |
| [43(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| 01(10(05(50(00(x1))))) | → | 01(15(51(10(00(00(x1)))))) | (405) |
| 01(10(05(50(01(x1))))) | → | 01(15(51(10(00(01(x1)))))) | (406) |
| 01(10(05(50(04(x1))))) | → | 01(15(51(10(00(04(x1)))))) | (407) |
| 01(10(05(50(02(x1))))) | → | 01(15(51(10(00(02(x1)))))) | (408) |
| 01(10(05(50(03(x1))))) | → | 01(15(51(10(00(03(x1)))))) | (409) |
| 01(10(05(50(05(x1))))) | → | 01(15(51(10(00(05(x1)))))) | (410) |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 + 1 |
| [51(x1)] | = | 1 · x1 |
| 30(01(10(05(50(00(x1)))))) | → | 35(51(10(00(02(20(00(x1))))))) | (981) |
| 30(01(10(05(50(01(x1)))))) | → | 35(51(10(00(02(20(01(x1))))))) | (982) |
| 30(01(10(05(50(04(x1)))))) | → | 35(51(10(00(02(20(04(x1))))))) | (983) |
| 30(01(10(05(50(02(x1)))))) | → | 35(51(10(00(02(20(02(x1))))))) | (984) |
| 30(01(10(05(50(03(x1)))))) | → | 35(51(10(00(02(20(03(x1))))))) | (985) |
| 30(01(10(05(50(05(x1)))))) | → | 35(51(10(00(02(20(05(x1))))))) | (986) |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 + 1 |
| [30(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 + 1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 + 2 |
| [14(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 + 2 |
| [41(x1)] | = | 1 · x1 + 2 |
| [22(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 + 1 |
| [53(x1)] | = | 1 · x1 |
| 01(10(03(30(x1)))) | → | 01(13(32(20(00(x1))))) | (231) |
| 01(10(03(31(x1)))) | → | 01(13(32(20(01(x1))))) | (232) |
| 01(10(04(43(30(x1))))) | → | 03(31(14(42(20(00(x1)))))) | (519) |
| 01(10(04(43(31(x1))))) | → | 03(31(14(42(20(01(x1)))))) | (520) |
| 30(01(10(03(30(x1))))) | → | 32(20(00(01(13(30(x1)))))) | (621) |
| 30(01(10(03(31(x1))))) | → | 32(20(00(01(13(31(x1)))))) | (622) |
| 30(01(10(03(34(x1))))) | → | 32(20(00(01(13(34(x1)))))) | (623) |
| 30(01(10(03(32(x1))))) | → | 32(20(00(01(13(32(x1)))))) | (624) |
| 30(01(10(03(33(x1))))) | → | 32(20(00(01(13(33(x1)))))) | (625) |
| 30(01(10(03(35(x1))))) | → | 32(20(00(01(13(35(x1)))))) | (626) |
| 40(01(10(03(30(x1))))) | → | 42(20(00(01(13(30(x1)))))) | (633) |
| 40(01(10(03(31(x1))))) | → | 42(20(00(01(13(31(x1)))))) | (634) |
| 40(01(10(03(34(x1))))) | → | 42(20(00(01(13(34(x1)))))) | (635) |
| 40(01(10(03(32(x1))))) | → | 42(20(00(01(13(32(x1)))))) | (636) |
| 40(01(10(03(33(x1))))) | → | 42(20(00(01(13(33(x1)))))) | (637) |
| 40(01(10(03(35(x1))))) | → | 42(20(00(01(13(35(x1)))))) | (638) |
| 50(01(10(03(30(x1))))) | → | 52(20(00(01(13(30(x1)))))) | (639) |
| 50(01(10(03(31(x1))))) | → | 52(20(00(01(13(31(x1)))))) | (640) |
| 50(01(10(03(34(x1))))) | → | 52(20(00(01(13(34(x1)))))) | (641) |
| 50(01(10(03(32(x1))))) | → | 52(20(00(01(13(32(x1)))))) | (642) |
| 50(01(10(03(33(x1))))) | → | 52(20(00(01(13(33(x1)))))) | (643) |
| 50(01(10(03(35(x1))))) | → | 52(20(00(01(13(35(x1)))))) | (644) |
| 40(01(10(03(30(x1))))) | → | 42(20(00(01(15(53(30(x1))))))) | (669) |
| 40(01(10(03(31(x1))))) | → | 42(20(00(01(15(53(31(x1))))))) | (670) |
| 40(01(10(03(34(x1))))) | → | 42(20(00(01(15(53(34(x1))))))) | (671) |
| 40(01(10(03(32(x1))))) | → | 42(20(00(01(15(53(32(x1))))))) | (672) |
| 40(01(10(03(33(x1))))) | → | 42(20(00(01(15(53(33(x1))))))) | (673) |
| 40(01(10(03(35(x1))))) | → | 42(20(00(01(15(53(35(x1))))))) | (674) |
| 40(01(14(43(30(x1))))) | → | 42(20(04(41(13(30(x1)))))) | (705) |
| 40(01(14(43(31(x1))))) | → | 42(20(04(41(13(31(x1)))))) | (706) |
| 40(01(14(43(34(x1))))) | → | 42(20(04(41(13(34(x1)))))) | (707) |
| 40(01(14(43(32(x1))))) | → | 42(20(04(41(13(32(x1)))))) | (708) |
| 40(01(14(43(33(x1))))) | → | 42(20(04(41(13(33(x1)))))) | (709) |
| 40(01(14(43(35(x1))))) | → | 42(20(04(41(13(35(x1)))))) | (710) |
| 40(01(10(04(43(30(x1)))))) | → | 42(20(00(04(41(13(30(x1))))))) | (1065) |
| 40(01(10(04(43(31(x1)))))) | → | 42(20(00(04(41(13(31(x1))))))) | (1066) |
| 40(01(10(04(43(34(x1)))))) | → | 42(20(00(04(41(13(34(x1))))))) | (1067) |
| 40(01(10(04(43(32(x1)))))) | → | 42(20(00(04(41(13(32(x1))))))) | (1068) |
| 40(01(10(04(43(33(x1)))))) | → | 42(20(00(04(41(13(33(x1))))))) | (1069) |
| 40(01(10(04(43(35(x1)))))) | → | 42(20(00(04(41(13(35(x1))))))) | (1070) |
| [01(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 + 1 |
| [00(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| 40(01(10(00(02(x1))))) | → | 41(12(20(00(00(02(22(x1))))))) | (600) |
| 40(01(10(02(20(02(x1)))))) | → | 41(13(30(00(00(02(22(x1))))))) | (888) |
| [01(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 + 1 |
| [20(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| 01(12(20(03(30(x1))))) | → | 01(10(02(21(13(30(x1)))))) | (435) |
| 01(12(20(03(31(x1))))) | → | 01(10(02(21(13(31(x1)))))) | (436) |
| 01(12(20(03(34(x1))))) | → | 01(10(02(21(13(34(x1)))))) | (437) |
| 01(12(20(03(32(x1))))) | → | 01(10(02(21(13(32(x1)))))) | (438) |
| 01(12(20(03(33(x1))))) | → | 01(10(02(21(13(33(x1)))))) | (439) |
| 01(12(20(03(35(x1))))) | → | 01(10(02(21(13(35(x1)))))) | (440) |
| [30(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 + 1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| 30(01(10(03(30(x1))))) | → | 32(20(00(01(15(53(30(x1))))))) | (657) |
| 30(01(10(03(31(x1))))) | → | 32(20(00(01(15(53(31(x1))))))) | (658) |
| 30(01(10(03(34(x1))))) | → | 32(20(00(01(15(53(34(x1))))))) | (659) |
| 30(01(10(03(32(x1))))) | → | 32(20(00(01(15(53(32(x1))))))) | (660) |
| 30(01(10(03(33(x1))))) | → | 32(20(00(01(15(53(33(x1))))))) | (661) |
| 30(01(10(03(35(x1))))) | → | 32(20(00(01(15(53(35(x1))))))) | (662) |
| 50(01(10(03(30(x1))))) | → | 52(20(00(01(15(53(30(x1))))))) | (675) |
| 50(01(10(03(31(x1))))) | → | 52(20(00(01(15(53(31(x1))))))) | (676) |
| 50(01(10(03(34(x1))))) | → | 52(20(00(01(15(53(34(x1))))))) | (677) |
| 50(01(10(03(32(x1))))) | → | 52(20(00(01(15(53(32(x1))))))) | (678) |
| 50(01(10(03(33(x1))))) | → | 52(20(00(01(15(53(33(x1))))))) | (679) |
| 50(01(10(03(35(x1))))) | → | 52(20(00(01(15(53(35(x1))))))) | (680) |
| [30(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 + 1 |
| [43(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| 30(01(14(43(30(x1))))) | → | 32(20(04(41(13(30(x1)))))) | (693) |
| 30(01(14(43(31(x1))))) | → | 32(20(04(41(13(31(x1)))))) | (694) |
| 30(01(14(43(34(x1))))) | → | 32(20(04(41(13(34(x1)))))) | (695) |
| 30(01(14(43(32(x1))))) | → | 32(20(04(41(13(32(x1)))))) | (696) |
| 30(01(14(43(33(x1))))) | → | 32(20(04(41(13(33(x1)))))) | (697) |
| 30(01(14(43(35(x1))))) | → | 32(20(04(41(13(35(x1)))))) | (698) |
| 50(01(14(43(30(x1))))) | → | 52(20(04(41(13(30(x1)))))) | (711) |
| 50(01(14(43(31(x1))))) | → | 52(20(04(41(13(31(x1)))))) | (712) |
| 50(01(14(43(34(x1))))) | → | 52(20(04(41(13(34(x1)))))) | (713) |
| 50(01(14(43(32(x1))))) | → | 52(20(04(41(13(32(x1)))))) | (714) |
| 50(01(14(43(33(x1))))) | → | 52(20(04(41(13(33(x1)))))) | (715) |
| 50(01(14(43(35(x1))))) | → | 52(20(04(41(13(35(x1)))))) | (716) |
| [30(x1)] | = | 1 · x1 + 1 |
| [01(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| 30(01(10(04(43(30(x1)))))) | → | 32(20(00(04(41(13(30(x1))))))) | (1053) |
| 30(01(10(04(43(31(x1)))))) | → | 32(20(00(04(41(13(31(x1))))))) | (1054) |
| 30(01(10(04(43(34(x1)))))) | → | 32(20(00(04(41(13(34(x1))))))) | (1055) |
| 30(01(10(04(43(32(x1)))))) | → | 32(20(00(04(41(13(32(x1))))))) | (1056) |
| 30(01(10(04(43(33(x1)))))) | → | 32(20(00(04(41(13(33(x1))))))) | (1057) |
| 30(01(10(04(43(35(x1)))))) | → | 32(20(00(04(41(13(35(x1))))))) | (1058) |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 + 1 |
| [10(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| 50(01(10(04(43(30(x1)))))) | → | 52(20(00(04(41(13(30(x1))))))) | (1071) |
| 50(01(10(04(43(31(x1)))))) | → | 52(20(00(04(41(13(31(x1))))))) | (1072) |
| 50(01(10(04(43(34(x1)))))) | → | 52(20(00(04(41(13(34(x1))))))) | (1073) |
| 50(01(10(04(43(32(x1)))))) | → | 52(20(00(04(41(13(32(x1))))))) | (1074) |
| 50(01(10(04(43(33(x1)))))) | → | 52(20(00(04(41(13(33(x1))))))) | (1075) |
| 50(01(10(04(43(35(x1)))))) | → | 52(20(00(04(41(13(35(x1))))))) | (1076) |
There are no rules in the TRS. Hence, it is terminating.