The rewrite relation of the following TRS is considered.
There are 110 ruless (increase limit for explicit display).
There are 110 ruless (increase limit for explicit display).
{0(☐), 1(☐), 2(☐)}
We obtain the transformed TRSThere are 200 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 600 ruless (increase limit for explicit display).
[00(x1)] | = | 1 · x1 + 1006 |
[01(x1)] | = | 1 · x1 + 942 |
[11(x1)] | = | 1 · x1 + 63 |
[10(x1)] | = | 1 · x1 + 921 |
[02(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 + 1954 |
[22(x1)] | = | 1 · x1 + 932 |
[21(x1)] | = | 1 · x1 + 1684 |
There are 595 ruless (increase limit for explicit display).
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 + 9 |
[21(x1)] | = | 1 · x1 + 7 |
[01(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 + 4 |
[20(x1)] | = | 1 · x1 |
10(00(02(21(10(01(11(x1))))))) | → | 11(11(10(01(12(22(22(21(x1)))))))) | (374) |
12(20(02(22(22(22(22(22(21(12(21(10(00(00(02(22(20(02(22(22(x1)))))))))))))))))))) | → | 11(11(12(21(10(01(10(01(12(20(02(21(10(00(01(12(21(10(00(00(01(11(12(x1))))))))))))))))))))))) | (477) |
22(20(00(02(22(20(02(21(12(21(12(22(20(02(20(01(10(00(01(11(10(00(00(00(02(x1))))))))))))))))))))))))) | → | 21(11(11(11(12(20(02(22(20(02(20(00(00(01(12(21(12(20(00(02(21(12(20(02(20(01(12(x1))))))))))))))))))))))))))) | (501) |
22(21(10(01(12(21(10(01(12(22(20(02(21(10(00(01(12(21(12(20(02(21(10(00(01(12(21(x1))))))))))))))))))))))))))) | → | 20(01(11(12(20(02(22(22(22(20(02(21(10(01(12(22(21(11(12(22(22(22(21(11(12(20(00(00(01(x1))))))))))))))))))))))))))))) | (530) |
02(20(00(00(00(00(02(20(02(21(11(11(x1)))))))))))) | → | 01(11(11(11(12(21(11(10(01(11(11(11(11(10(02(22(20(01(x1)))))))))))))))))) | (659) |
There are no rules in the TRS. Hence, it is terminating.