The rewrite relation of the following TRS is considered.
There are 110 ruless (increase limit for explicit display).
{0(☐), 1(☐), 2(☐)}
We obtain the transformed TRSThere are 214 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 642 ruless (increase limit for explicit display).
[10(x1)] | = | 1 · x1 + 2 |
[02(x1)] | = | 1 · x1 + 1 |
[21(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 + 2 |
[20(x1)] | = | 1 · x1 + 1 |
[22(x1)] | = | 1 · x1 + 1 |
[00(x1)] | = | 1 · x1 + 1 |
[01(x1)] | = | 1 · x1 |
There are 589 ruless (increase limit for explicit display).
There are 910 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
There are 323 ruless (increase limit for explicit display).
[01#(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 + 1 · x1 |
[20(x1)] | = | 1 + 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[02(x1)] | = | 1 + 1 · x1 |
[22(x1)] | = | 1 + 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[10(x1)] | = | 1 + 1 · x1 |
[10#(x1)] | = | 1 + 1 · x1 |
[21(x1)] | = | 1 + 1 · x1 |
[12#(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[11#(x1)] | = | 1 · x1 |
[20#(x1)] | = | 1 · x1 |
[00#(x1)] | = | 1 · x1 |
[02#(x1)] | = | 1 · x1 |
[22#(x1)] | = | 1 · x1 |
There are 304 ruless (increase limit for explicit display).
could be deleted.The dependency pairs are split into 2 components.
01#(12(20(00(00(02(22(20(00(00(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(00(x1)))))))))) | (934) |
01#(12(20(00(00(02(22(20(00(01(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(01(x1)))))))))) | (929) |
01#(12(20(00(00(02(22(20(00(02(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(02(x1)))))))))) | (939) |
[01#(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 |
[20(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[22(x1)] | = | 0 |
[10(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 |
[21(x1)] | = | 1 · x1 |
01#(12(20(00(00(02(22(20(00(00(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(00(x1)))))))))) | (934) |
01#(12(20(00(00(02(22(20(00(01(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(01(x1)))))))))) | (929) |
01#(12(20(00(00(02(22(20(00(02(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(02(x1)))))))))) | (939) |
There are no pairs anymore.
10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(02(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(02(x1))))))))))))))))))))))))))))) | (1204) |
10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(01(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(01(x1))))))))))))))))))))))))))))) | (1148) |
[10#(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 |
[20(x1)] | = | 0 |
[01(x1)] | = | 0 |
[12(x1)] | = | 0 |
[22(x1)] | = | 0 |
[21(x1)] | = | 0 |
[00(x1)] | = | 0 |
[10(x1)] | = | 0 |
[11(x1)] | = | 1 |
01(12(20(00(00(02(22(20(00(00(x1)))))))))) | → | 01(10(00(02(20(02(22(20(00(00(x1)))))))))) | (283) |
01(12(20(00(00(02(22(20(00(01(x1)))))))))) | → | 01(10(00(02(20(02(22(20(00(01(x1)))))))))) | (282) |
01(12(20(00(00(02(22(20(00(02(x1)))))))))) | → | 01(10(00(02(20(02(22(20(00(02(x1)))))))))) | (284) |
10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(02(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(02(x1))))))))))))))))))))))))))))) | (1204) |
10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(01(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(01(x1))))))))))))))))))))))))))))) | (1148) |
There are no pairs anymore.