The rewrite relation of the following TRS is considered.
There are 110 ruless (increase limit for explicit display).
{0(☐), 1(☐), 2(☐)}
We obtain the transformed TRSThere are 214 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 642 ruless (increase limit for explicit display).
| [10(x1)] | = | 1 · x1 + 2 |
| [02(x1)] | = | 1 · x1 + 1 |
| [21(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 · x1 + 2 |
| [20(x1)] | = | 1 · x1 + 1 |
| [22(x1)] | = | 1 · x1 + 1 |
| [00(x1)] | = | 1 · x1 + 1 |
| [01(x1)] | = | 1 · x1 |
There are 589 ruless (increase limit for explicit display).
There are 910 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
There are 323 ruless (increase limit for explicit display).
| [01#(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 + 1 · x1 |
| [20(x1)] | = | 1 + 1 · x1 |
| [00(x1)] | = | 1 + 1 · x1 |
| [02(x1)] | = | 1 + 1 · x1 |
| [22(x1)] | = | 1 + 1 · x1 |
| [01(x1)] | = | 1 + 1 · x1 |
| [10(x1)] | = | 1 + 1 · x1 |
| [10#(x1)] | = | 1 + 1 · x1 |
| [21(x1)] | = | 1 + 1 · x1 |
| [12#(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [11#(x1)] | = | 1 · x1 |
| [20#(x1)] | = | 1 · x1 |
| [00#(x1)] | = | 1 · x1 |
| [02#(x1)] | = | 1 · x1 |
| [22#(x1)] | = | 1 · x1 |
There are 304 ruless (increase limit for explicit display).
could be deleted.The dependency pairs are split into 2 components.
| 01#(12(20(00(00(02(22(20(00(00(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(00(x1)))))))))) | (934) |
| 01#(12(20(00(00(02(22(20(00(01(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(01(x1)))))))))) | (929) |
| 01#(12(20(00(00(02(22(20(00(02(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(02(x1)))))))))) | (939) |
| [01#(x1)] | = | 1 · x1 |
| [12(x1)] | = | 1 |
| [20(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [22(x1)] | = | 0 |
| [10(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 |
| [21(x1)] | = | 1 · x1 |
| 01#(12(20(00(00(02(22(20(00(00(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(00(x1)))))))))) | (934) |
| 01#(12(20(00(00(02(22(20(00(01(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(01(x1)))))))))) | (929) |
| 01#(12(20(00(00(02(22(20(00(02(x1)))))))))) | → | 01#(10(00(02(20(02(22(20(00(02(x1)))))))))) | (939) |
There are no pairs anymore.
| 10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(02(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(02(x1))))))))))))))))))))))))))))) | (1204) |
| 10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(01(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(01(x1))))))))))))))))))))))))))))) | (1148) |
| [10#(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 |
| [20(x1)] | = | 0 |
| [01(x1)] | = | 0 |
| [12(x1)] | = | 0 |
| [22(x1)] | = | 0 |
| [21(x1)] | = | 0 |
| [00(x1)] | = | 0 |
| [10(x1)] | = | 0 |
| [11(x1)] | = | 1 |
| 01(12(20(00(00(02(22(20(00(00(x1)))))))))) | → | 01(10(00(02(20(02(22(20(00(00(x1)))))))))) | (283) |
| 01(12(20(00(00(02(22(20(00(01(x1)))))))))) | → | 01(10(00(02(20(02(22(20(00(01(x1)))))))))) | (282) |
| 01(12(20(00(00(02(22(20(00(02(x1)))))))))) | → | 01(10(00(02(20(02(22(20(00(02(x1)))))))))) | (284) |
| 10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(02(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(02(x1))))))))))))))))))))))))))))) | (1204) |
| 10#(02(20(01(12(22(21(12(20(00(02(22(22(21(12(20(02(21(12(20(00(02(20(02(22(20(00(00(01(x1))))))))))))))))))))))))))))) | → | 10#(01(12(20(01(10(00(01(10(00(02(22(20(02(22(22(20(02(22(22(22(22(20(01(12(20(02(20(01(x1))))))))))))))))))))))))))))) | (1148) |
There are no pairs anymore.