The rewrite relation of the following TRS is considered.
There are 110 ruless (increase limit for explicit display).
There are 110 ruless (increase limit for explicit display).
{0(☐), 1(☐), 2(☐)}
We obtain the transformed TRSThere are 234 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 702 ruless (increase limit for explicit display).
[01(x1)] | = | 1 · x1 + 2 |
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 + 1 |
[11(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 + 1 |
[22(x1)] | = | 1 · x1 + 1 |
[20(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 + 1 |
[02(x1)] | = | 1 · x1 + 2 |
There are 665 ruless (increase limit for explicit display).
There are 484 ruless (increase limit for explicit display).
The dependency pairs are split into 3 components.
22#(20(01(11(10(00(02(20(00(01(11(12(20(01(10(02(20(01(12(22(21(12(20(x1))))))))))))))))))))))) | → | 22#(20(x1)) | (1436) |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
22#(20(01(11(10(00(02(20(00(01(11(12(20(01(10(02(20(01(12(22(21(12(20(x1))))))))))))))))))))))) | → | 22#(20(x1)) | (1436) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
11#(10(02(21(11(12(21(11(10(02(20(00(00(02(x1)))))))))))))) | → | 11#(12(x1)) | (1139) |
11#(12(21(11(12(21(12(21(11(12(20(00(00(02(21(10(02(20(01(11(10(01(12(22(22(20(01(10(x1)))))))))))))))))))))))))))) | → | 11#(10(x1)) | (1560) |
11#(10(02(21(11(12(21(11(10(02(20(00(00(00(x1)))))))))))))) | → | 11#(10(x1)) | (1128) |
11#(12(21(11(12(21(12(21(11(12(20(00(00(02(21(10(02(20(01(11(10(01(12(22(22(20(01(12(x1)))))))))))))))))))))))))))) | → | 11#(12(x1)) | (1592) |
[11#(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 + 1 · x1 |
[02(x1)] | = | 1 + 1 · x1 |
[21(x1)] | = | 1 + 1 · x1 |
[11(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 + 1 · x1 |
[20(x1)] | = | 1 + 1 · x1 |
[00(x1)] | = | 1 + 1 · x1 |
[01(x1)] | = | 1 + 1 · x1 |
[22(x1)] | = | 1 + 1 · x1 |
11#(10(02(21(11(12(21(11(10(02(20(00(00(02(x1)))))))))))))) | → | 11#(12(x1)) | (1139) |
11#(12(21(11(12(21(12(21(11(12(20(00(00(02(21(10(02(20(01(11(10(01(12(22(22(20(01(10(x1)))))))))))))))))))))))))))) | → | 11#(10(x1)) | (1560) |
11#(10(02(21(11(12(21(11(10(02(20(00(00(00(x1)))))))))))))) | → | 11#(10(x1)) | (1128) |
11#(12(21(11(12(21(12(21(11(12(20(00(00(02(21(10(02(20(01(11(10(01(12(22(22(20(01(12(x1)))))))))))))))))))))))))))) | → | 11#(12(x1)) | (1592) |
There are no pairs anymore.
12#(21(11(10(02(21(10(02(x1)))))))) | → | 12#(x1) | (1117) |
[21(x1)] | = | 1 · x1 |
[11(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 |
[12#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
12#(21(11(10(02(21(10(02(x1)))))))) | → | 12#(x1) | (1117) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.