The rewrite relation of the following TRS is considered.
There are 110 ruless (increase limit for explicit display).
{0(☐), 1(☐), 2(☐)}
We obtain the transformed TRSThere are 218 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 654 ruless (increase limit for explicit display).
[20(x1)] | = | 1 · x1 + 39 |
[01(x1)] | = | 1 · x1 + 18 |
[11(x1)] | = | 1 · x1 + 20 |
[12(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 + 32 |
[00(x1)] | = | 1 · x1 + 37 |
[02(x1)] | = | 1 · x1 + 30 |
[22(x1)] | = | 1 · x1 + 38 |
There are 649 ruless (increase limit for explicit display).
[11(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 |
[02(x1)] | = | 1 · x1 + 1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
[22(x1)] | = | 1 · x1 + 1 |
00(01(10(01(11(11(12(20(01(10(00(00(00(02(21(12(20(02(21(10(02(21(12(21(10(01(11(10(01(x1))))))))))))))))))))))))))))) | → | 01(11(10(01(10(01(10(00(00(00(00(01(12(22(21(10(01(12(21(12(22(20(01(10(00(01(12(21(11(x1))))))))))))))))))))))))))))) | (422) |
12(20(02(21(11(10(02(22(22(22(22(20(01(12(20(01(11(10(00(01(10(01(12(22(21(12(22(20(01(x1))))))))))))))))))))))))))))) | → | 10(02(20(02(22(20(00(01(11(11(11(12(21(12(22(22(21(10(00(00(00(01(12(20(01(12(21(10(01(11(11(x1))))))))))))))))))))))))))))))) | (914) |
[11(x1)] | = | 1 · x1 |
[10(x1)] | = | 1 · x1 |
[00(x1)] | = | 1 · x1 + 1 |
[02(x1)] | = | 1 · x1 |
[21(x1)] | = | 1 · x1 |
[12(x1)] | = | 1 · x1 |
[20(x1)] | = | 1 · x1 |
[01(x1)] | = | 1 · x1 |
11(10(00(02(21(12(x1)))))) | → | 10(02(20(01(12(21(12(x1))))))) | (276) |
11(10(00(02(21(10(x1)))))) | → | 10(02(20(01(12(21(10(x1))))))) | (277) |
11(10(00(02(21(11(x1)))))) | → | 10(02(20(01(12(21(11(x1))))))) | (278) |
There are no rules in the TRS. Hence, it is terminating.