The rewrite relation of the following TRS is considered.
| 0(1(2(x1))) | → | 0(0(2(1(x1)))) | (1) |
| 0(1(2(x1))) | → | 0(2(1(3(x1)))) | (2) |
| 0(1(2(x1))) | → | 0(2(3(1(x1)))) | (3) |
| 0(1(4(x1))) | → | 0(4(1(1(0(0(x1)))))) | (4) |
| 0(3(2(x1))) | → | 0(0(2(3(x1)))) | (5) |
| 0(3(2(x1))) | → | 0(2(3(1(x1)))) | (6) |
| 0(3(4(x1))) | → | 0(0(4(3(x1)))) | (7) |
| 0(4(5(x1))) | → | 0(0(4(1(5(x1))))) | (8) |
| 2(0(1(x1))) | → | 0(2(1(1(x1)))) | (9) |
| 2(4(1(x1))) | → | 0(4(2(3(1(x1))))) | (10) |
| 4(3(2(x1))) | → | 4(2(3(1(x1)))) | (11) |
| 0(1(0(1(x1)))) | → | 0(0(3(1(1(x1))))) | (12) |
| 0(1(0(2(x1)))) | → | 0(0(2(1(1(1(x1)))))) | (13) |
| 0(1(4(2(x1)))) | → | 0(4(2(1(1(x1))))) | (14) |
| 0(3(2(4(x1)))) | → | 0(4(2(3(0(x1))))) | (15) |
| 0(3(4(2(x1)))) | → | 0(4(2(3(1(x1))))) | (16) |
| 0(3(5(2(x1)))) | → | 0(2(1(3(5(x1))))) | (17) |
| 0(4(5(3(x1)))) | → | 0(0(4(3(5(x1))))) | (18) |
| 0(5(3(4(x1)))) | → | 0(4(3(3(5(x1))))) | (19) |
| 0(5(4(2(x1)))) | → | 0(4(2(1(5(x1))))) | (20) |
| 2(0(3(1(x1)))) | → | 0(3(2(1(1(x1))))) | (21) |
| 2(2(4(1(x1)))) | → | 4(2(2(3(1(x1))))) | (22) |
| 2(3(4(3(x1)))) | → | 2(3(0(4(3(3(x1)))))) | (23) |
| 2(4(1(1(x1)))) | → | 2(0(4(1(1(x1))))) | (24) |
| 2(4(1(3(x1)))) | → | 0(4(3(2(1(x1))))) | (25) |
| 2(4(3(2(x1)))) | → | 2(0(4(2(3(x1))))) | (26) |
| 2(5(4(3(x1)))) | → | 0(4(2(3(5(x1))))) | (27) |
| 4(2(0(3(x1)))) | → | 2(3(0(4(3(x1))))) | (28) |
| 4(3(4(3(x1)))) | → | 4(3(0(4(3(x1))))) | (29) |
| 0(1(5(3(2(x1))))) | → | 0(5(0(3(2(1(x1)))))) | (30) |
| 0(1(5(4(2(x1))))) | → | 5(2(1(0(4(3(x1)))))) | (31) |
| 0(1(5(4(5(x1))))) | → | 0(4(1(2(5(5(x1)))))) | (32) |
| 0(2(2(4(3(x1))))) | → | 2(0(4(3(0(2(x1)))))) | (33) |
| 0(3(0(4(5(x1))))) | → | 5(0(0(4(3(2(x1)))))) | (34) |
| 0(3(2(4(3(x1))))) | → | 0(4(3(3(4(2(x1)))))) | (35) |
| 0(4(2(5(4(x1))))) | → | 0(4(2(1(5(4(x1)))))) | (36) |
| 0(5(3(2(1(x1))))) | → | 0(2(3(1(3(5(x1)))))) | (37) |
| 0(5(4(1(4(x1))))) | → | 4(0(4(1(5(0(x1)))))) | (38) |
| 2(4(1(5(3(x1))))) | → | 0(4(1(3(5(2(x1)))))) | (39) |
| 2(4(2(0(1(x1))))) | → | 2(1(1(2(0(4(x1)))))) | (40) |
| 2(5(3(4(1(x1))))) | → | 5(1(0(4(3(2(x1)))))) | (41) |
| 4(0(1(5(4(x1))))) | → | 4(0(0(4(1(5(x1)))))) | (42) |
| 4(3(0(2(3(x1))))) | → | 0(4(2(3(1(3(x1)))))) | (43) |
| 4(4(1(2(3(x1))))) | → | 0(4(4(2(3(1(x1)))))) | (44) |
| 4(5(1(0(2(x1))))) | → | 1(0(4(2(1(5(x1)))))) | (45) |
| 2(1(0(x1))) | → | 1(2(0(0(x1)))) | (46) |
| 2(1(0(x1))) | → | 3(1(2(0(x1)))) | (47) |
| 2(1(0(x1))) | → | 1(3(2(0(x1)))) | (48) |
| 4(1(0(x1))) | → | 0(0(1(1(4(0(x1)))))) | (49) |
| 2(3(0(x1))) | → | 3(2(0(0(x1)))) | (50) |
| 2(3(0(x1))) | → | 1(3(2(0(x1)))) | (51) |
| 4(3(0(x1))) | → | 3(4(0(0(x1)))) | (52) |
| 5(4(0(x1))) | → | 5(1(4(0(0(x1))))) | (53) |
| 1(0(2(x1))) | → | 1(1(2(0(x1)))) | (54) |
| 1(4(2(x1))) | → | 1(3(2(4(0(x1))))) | (55) |
| 2(3(4(x1))) | → | 1(3(2(4(x1)))) | (56) |
| 1(0(1(0(x1)))) | → | 1(1(3(0(0(x1))))) | (57) |
| 2(0(1(0(x1)))) | → | 1(1(1(2(0(0(x1)))))) | (58) |
| 2(4(1(0(x1)))) | → | 1(1(2(4(0(x1))))) | (59) |
| 4(2(3(0(x1)))) | → | 0(3(2(4(0(x1))))) | (60) |
| 2(4(3(0(x1)))) | → | 1(3(2(4(0(x1))))) | (61) |
| 2(5(3(0(x1)))) | → | 5(3(1(2(0(x1))))) | (62) |
| 3(5(4(0(x1)))) | → | 5(3(4(0(0(x1))))) | (63) |
| 4(3(5(0(x1)))) | → | 5(3(3(4(0(x1))))) | (64) |
| 2(4(5(0(x1)))) | → | 5(1(2(4(0(x1))))) | (65) |
| 1(3(0(2(x1)))) | → | 1(1(2(3(0(x1))))) | (66) |
| 1(4(2(2(x1)))) | → | 1(3(2(2(4(x1))))) | (67) |
| 3(4(3(2(x1)))) | → | 3(3(4(0(3(2(x1)))))) | (68) |
| 1(1(4(2(x1)))) | → | 1(1(4(0(2(x1))))) | (69) |
| 3(1(4(2(x1)))) | → | 1(2(3(4(0(x1))))) | (70) |
| 2(3(4(2(x1)))) | → | 3(2(4(0(2(x1))))) | (71) |
| 3(4(5(2(x1)))) | → | 5(3(2(4(0(x1))))) | (72) |
| 3(0(2(4(x1)))) | → | 3(4(0(3(2(x1))))) | (73) |
| 3(4(3(4(x1)))) | → | 3(4(0(3(4(x1))))) | (74) |
| 2(3(5(1(0(x1))))) | → | 1(2(3(0(5(0(x1)))))) | (75) |
| 2(4(5(1(0(x1))))) | → | 3(4(0(1(2(5(x1)))))) | (76) |
| 5(4(5(1(0(x1))))) | → | 5(5(2(1(4(0(x1)))))) | (77) |
| 3(4(2(2(0(x1))))) | → | 2(0(3(4(0(2(x1)))))) | (78) |
| 5(4(0(3(0(x1))))) | → | 2(3(4(0(0(5(x1)))))) | (79) |
| 3(4(2(3(0(x1))))) | → | 2(4(3(3(4(0(x1)))))) | (80) |
| 4(5(2(4(0(x1))))) | → | 4(5(1(2(4(0(x1)))))) | (81) |
| 1(2(3(5(0(x1))))) | → | 5(3(1(3(2(0(x1)))))) | (82) |
| 4(1(4(5(0(x1))))) | → | 0(5(1(4(0(4(x1)))))) | (83) |
| 3(5(1(4(2(x1))))) | → | 2(5(3(1(4(0(x1)))))) | (84) |
| 1(0(2(4(2(x1))))) | → | 4(0(2(1(1(2(x1)))))) | (85) |
| 1(4(3(5(2(x1))))) | → | 2(3(4(0(1(5(x1)))))) | (86) |
| 4(5(1(0(4(x1))))) | → | 5(1(4(0(0(4(x1)))))) | (87) |
| 3(2(0(3(4(x1))))) | → | 3(1(3(2(4(0(x1)))))) | (88) |
| 3(2(1(4(4(x1))))) | → | 1(3(2(4(4(0(x1)))))) | (89) |
| 2(0(1(5(4(x1))))) | → | 5(1(2(4(0(1(x1)))))) | (90) |
There are 166 ruless (increase limit for explicit display).
The dependency pairs are split into 2 components.
| 2#(1(0(x1))) | → | 3#(1(2(0(x1)))) | (93) |
| 3#(1(4(2(x1)))) | → | 1#(2(3(4(0(x1))))) | (169) |
| 1#(0(2(x1))) | → | 1#(1(2(0(x1)))) | (111) |
| 1#(0(2(x1))) | → | 1#(2(0(x1))) | (112) |
| 1#(0(2(x1))) | → | 2#(0(x1)) | (113) |
| 2#(0(1(5(4(x1))))) | → | 1#(x1) | (256) |
| 1#(3(0(2(x1)))) | → | 1#(1(2(3(0(x1))))) | (154) |
| 1#(3(0(2(x1)))) | → | 1#(2(3(0(x1)))) | (155) |
| 1#(3(0(2(x1)))) | → | 2#(3(0(x1))) | (156) |
| 2#(1(0(x1))) | → | 1#(2(0(x1))) | (94) |
| 1#(3(0(2(x1)))) | → | 3#(0(x1)) | (157) |
| 3#(0(2(4(x1)))) | → | 3#(2(x1)) | (182) |
| 3#(1(4(2(x1)))) | → | 2#(3(4(0(x1)))) | (170) |
| 2#(3(4(x1))) | → | 1#(3(2(4(x1)))) | (118) |
| 1#(4(2(2(x1)))) | → | 1#(3(2(2(4(x1))))) | (158) |
| 1#(4(2(2(x1)))) | → | 3#(2(2(4(x1)))) | (159) |
| 3#(0(2(4(x1)))) | → | 2#(x1) | (183) |
| 2#(1(0(x1))) | → | 2#(0(x1)) | (95) |
| 2#(1(0(x1))) | → | 1#(3(2(0(x1)))) | (96) |
| 1#(4(2(2(x1)))) | → | 2#(2(4(x1))) | (160) |
| 2#(1(0(x1))) | → | 3#(2(0(x1))) | (97) |
| 3#(4(2(2(0(x1))))) | → | 2#(x1) | (203) |
| 2#(3(0(x1))) | → | 1#(3(2(0(x1)))) | (103) |
| 1#(4(2(2(x1)))) | → | 2#(4(x1)) | (161) |
| 2#(3(0(x1))) | → | 3#(2(0(x1))) | (104) |
| 2#(3(0(x1))) | → | 2#(0(x1)) | (105) |
| 2#(3(4(x1))) | → | 3#(2(4(x1))) | (119) |
| 2#(3(4(x1))) | → | 2#(4(x1)) | (120) |
| 2#(5(3(0(x1)))) | → | 5#(3(1(2(0(x1))))) | (139) |
| 5#(4(0(3(0(x1))))) | → | 2#(3(4(0(0(5(x1)))))) | (204) |
| 5#(4(0(3(0(x1))))) | → | 5#(x1) | (207) |
| 2#(5(3(0(x1)))) | → | 3#(1(2(0(x1)))) | (140) |
| 2#(5(3(0(x1)))) | → | 1#(2(0(x1))) | (141) |
| 1#(2(3(5(0(x1))))) | → | 5#(3(1(3(2(0(x1)))))) | (216) |
| 1#(2(3(5(0(x1))))) | → | 3#(1(3(2(0(x1))))) | (217) |
| 1#(2(3(5(0(x1))))) | → | 1#(3(2(0(x1)))) | (218) |
| 1#(2(3(5(0(x1))))) | → | 3#(2(0(x1))) | (219) |
| 1#(2(3(5(0(x1))))) | → | 2#(0(x1)) | (220) |
| 1#(0(2(4(2(x1))))) | → | 2#(1(1(2(x1)))) | (231) |
| 2#(5(3(0(x1)))) | → | 2#(0(x1)) | (142) |
| 2#(3(5(1(0(x1))))) | → | 1#(2(3(0(5(0(x1)))))) | (186) |
| 1#(0(2(4(2(x1))))) | → | 1#(1(2(x1))) | (232) |
| 1#(0(2(4(2(x1))))) | → | 1#(2(x1)) | (233) |
| 1#(4(3(5(2(x1))))) | → | 2#(3(4(0(1(5(x1)))))) | (234) |
| 1#(4(3(5(2(x1))))) | → | 1#(5(x1)) | (237) |
| 1#(4(3(5(2(x1))))) | → | 5#(x1) | (238) |
| 2#(3(5(1(0(x1))))) | → | 2#(3(0(5(0(x1))))) | (187) |
| 2#(4(5(1(0(x1))))) | → | 1#(2(5(x1))) | (192) |
| 2#(4(5(1(0(x1))))) | → | 2#(5(x1)) | (193) |
| 2#(4(5(1(0(x1))))) | → | 5#(x1) | (194) |
| [2#(x1)] | = | 1 |
| [1(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 |
| [3#(x1)] | = | 1 · x1 |
| [2(x1)] | = | 0 |
| [4(x1)] | = | 1 |
| [1#(x1)] | = | 1 |
| [3(x1)] | = | 0 |
| [5(x1)] | = | 0 |
| [5#(x1)] | = | 1 |
| 2(0(1(0(x1)))) | → | 1(1(1(2(0(0(x1)))))) | (58) |
| 2(0(1(5(4(x1))))) | → | 5(1(2(4(0(1(x1)))))) | (90) |
| 5(4(0(3(0(x1))))) | → | 2(3(4(0(0(5(x1)))))) | (79) |
| 2(3(4(x1))) | → | 1(3(2(4(x1)))) | (56) |
| 1(0(2(x1))) | → | 1(1(2(0(x1)))) | (54) |
| 1(3(0(2(x1)))) | → | 1(1(2(3(0(x1))))) | (66) |
| 1(4(2(2(x1)))) | → | 1(3(2(2(4(x1))))) | (67) |
| 1(2(3(5(0(x1))))) | → | 5(3(1(3(2(0(x1)))))) | (82) |
| 1(4(3(5(2(x1))))) | → | 2(3(4(0(1(5(x1)))))) | (86) |
| 1(4(2(x1))) | → | 1(3(2(4(0(x1))))) | (55) |
| 1(0(1(0(x1)))) | → | 1(1(3(0(0(x1))))) | (57) |
| 1(1(4(2(x1)))) | → | 1(1(4(0(2(x1))))) | (69) |
| 1(0(2(4(2(x1))))) | → | 4(0(2(1(1(2(x1)))))) | (85) |
| 3(0(2(4(x1)))) | → | 3(4(0(3(2(x1))))) | (73) |
| 2(1(0(x1))) | → | 1(2(0(0(x1)))) | (46) |
| 2(1(0(x1))) | → | 3(1(2(0(x1)))) | (47) |
| 2(1(0(x1))) | → | 1(3(2(0(x1)))) | (48) |
| 2(3(0(x1))) | → | 3(2(0(0(x1)))) | (50) |
| 2(3(0(x1))) | → | 1(3(2(0(x1)))) | (51) |
| 2(4(1(0(x1)))) | → | 1(1(2(4(0(x1))))) | (59) |
| 2(4(3(0(x1)))) | → | 1(3(2(4(0(x1))))) | (61) |
| 2(5(3(0(x1)))) | → | 5(3(1(2(0(x1))))) | (62) |
| 2(4(5(0(x1)))) | → | 5(1(2(4(0(x1))))) | (65) |
| 2(3(4(2(x1)))) | → | 3(2(4(0(2(x1))))) | (71) |
| 2(3(5(1(0(x1))))) | → | 1(2(3(0(5(0(x1)))))) | (75) |
| 2(4(5(1(0(x1))))) | → | 3(4(0(1(2(5(x1)))))) | (76) |
| 3(5(4(0(x1)))) | → | 5(3(4(0(0(x1))))) | (63) |
| 3(4(3(2(x1)))) | → | 3(3(4(0(3(2(x1)))))) | (68) |
| 3(1(4(2(x1)))) | → | 1(2(3(4(0(x1))))) | (70) |
| 3(4(5(2(x1)))) | → | 5(3(2(4(0(x1))))) | (72) |
| 3(4(3(4(x1)))) | → | 3(4(0(3(4(x1))))) | (74) |
| 3(4(2(2(0(x1))))) | → | 2(0(3(4(0(2(x1)))))) | (78) |
| 3(4(2(3(0(x1))))) | → | 2(4(3(3(4(0(x1)))))) | (80) |
| 3(5(1(4(2(x1))))) | → | 2(5(3(1(4(0(x1)))))) | (84) |
| 3(2(0(3(4(x1))))) | → | 3(1(3(2(4(0(x1)))))) | (88) |
| 3(2(1(4(4(x1))))) | → | 1(3(2(4(4(0(x1)))))) | (89) |
| 5(4(0(x1))) | → | 5(1(4(0(0(x1))))) | (53) |
| 5(4(5(1(0(x1))))) | → | 5(5(2(1(4(0(x1)))))) | (77) |
| 2#(1(0(x1))) | → | 3#(1(2(0(x1)))) | (93) |
| 3#(0(2(4(x1)))) | → | 3#(2(x1)) | (182) |
| 1#(4(2(2(x1)))) | → | 3#(2(2(4(x1)))) | (159) |
| 2#(1(0(x1))) | → | 3#(2(0(x1))) | (97) |
| 2#(3(0(x1))) | → | 3#(2(0(x1))) | (104) |
| 2#(3(4(x1))) | → | 3#(2(4(x1))) | (119) |
| 2#(5(3(0(x1)))) | → | 3#(1(2(0(x1)))) | (140) |
| 1#(2(3(5(0(x1))))) | → | 3#(1(3(2(0(x1))))) | (217) |
| 1#(2(3(5(0(x1))))) | → | 3#(2(0(x1))) | (219) |
The dependency pairs are split into 1 component.
| 1#(0(2(x1))) | → | 1#(2(0(x1))) | (112) |
| 1#(0(2(x1))) | → | 1#(1(2(0(x1)))) | (111) |
| 1#(0(2(x1))) | → | 2#(0(x1)) | (113) |
| 2#(0(1(5(4(x1))))) | → | 1#(x1) | (256) |
| 1#(3(0(2(x1)))) | → | 1#(1(2(3(0(x1))))) | (154) |
| 1#(3(0(2(x1)))) | → | 1#(2(3(0(x1)))) | (155) |
| 1#(3(0(2(x1)))) | → | 2#(3(0(x1))) | (156) |
| 2#(1(0(x1))) | → | 1#(2(0(x1))) | (94) |
| 1#(3(0(2(x1)))) | → | 3#(0(x1)) | (157) |
| 3#(0(2(4(x1)))) | → | 2#(x1) | (183) |
| 2#(1(0(x1))) | → | 2#(0(x1)) | (95) |
| 2#(1(0(x1))) | → | 1#(3(2(0(x1)))) | (96) |
| 1#(4(2(2(x1)))) | → | 1#(3(2(2(4(x1))))) | (158) |
| 1#(4(2(2(x1)))) | → | 2#(2(4(x1))) | (160) |
| 2#(3(0(x1))) | → | 1#(3(2(0(x1)))) | (103) |
| 1#(4(2(2(x1)))) | → | 2#(4(x1)) | (161) |
| 2#(3(0(x1))) | → | 2#(0(x1)) | (105) |
| 2#(3(4(x1))) | → | 1#(3(2(4(x1)))) | (118) |
| 1#(2(3(5(0(x1))))) | → | 5#(3(1(3(2(0(x1)))))) | (216) |
| 5#(4(0(3(0(x1))))) | → | 2#(3(4(0(0(5(x1)))))) | (204) |
| 2#(3(4(x1))) | → | 2#(4(x1)) | (120) |
| 2#(5(3(0(x1)))) | → | 5#(3(1(2(0(x1))))) | (139) |
| 5#(4(0(3(0(x1))))) | → | 5#(x1) | (207) |
| 2#(5(3(0(x1)))) | → | 1#(2(0(x1))) | (141) |
| 1#(2(3(5(0(x1))))) | → | 1#(3(2(0(x1)))) | (218) |
| 1#(2(3(5(0(x1))))) | → | 2#(0(x1)) | (220) |
| 1#(0(2(4(2(x1))))) | → | 2#(1(1(2(x1)))) | (231) |
| 2#(5(3(0(x1)))) | → | 2#(0(x1)) | (142) |
| 2#(3(5(1(0(x1))))) | → | 1#(2(3(0(5(0(x1)))))) | (186) |
| 1#(0(2(4(2(x1))))) | → | 1#(1(2(x1))) | (232) |
| 1#(0(2(4(2(x1))))) | → | 1#(2(x1)) | (233) |
| 1#(4(3(5(2(x1))))) | → | 2#(3(4(0(1(5(x1)))))) | (234) |
| 1#(4(3(5(2(x1))))) | → | 1#(5(x1)) | (237) |
| 1#(4(3(5(2(x1))))) | → | 5#(x1) | (238) |
| 2#(3(5(1(0(x1))))) | → | 2#(3(0(5(0(x1))))) | (187) |
| 2#(4(5(1(0(x1))))) | → | 1#(2(5(x1))) | (192) |
| 2#(4(5(1(0(x1))))) | → | 2#(5(x1)) | (193) |
| 2#(4(5(1(0(x1))))) | → | 5#(x1) | (194) |
| [1#(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 · x1 |
| [2(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 · x1 |
| [2#(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 + 1 · x1 |
| [4(x1)] | = | 1 · x1 |
| [3(x1)] | = | 1 · x1 |
| [3#(x1)] | = | 1 · x1 |
| [5#(x1)] | = | 1 + 1 · x1 |
| 2#(0(1(5(4(x1))))) | → | 1#(x1) | (256) |
| 2#(5(3(0(x1)))) | → | 1#(2(0(x1))) | (141) |
| 1#(2(3(5(0(x1))))) | → | 1#(3(2(0(x1)))) | (218) |
| 1#(2(3(5(0(x1))))) | → | 2#(0(x1)) | (220) |
| 2#(5(3(0(x1)))) | → | 2#(0(x1)) | (142) |
The dependency pairs are split into 1 component.
| 1#(0(2(x1))) | → | 1#(1(2(0(x1)))) | (111) |
| 1#(0(2(x1))) | → | 1#(2(0(x1))) | (112) |
| 1#(3(0(2(x1)))) | → | 1#(1(2(3(0(x1))))) | (154) |
| 1#(3(0(2(x1)))) | → | 1#(2(3(0(x1)))) | (155) |
| 1#(3(0(2(x1)))) | → | 2#(3(0(x1))) | (156) |
| 2#(1(0(x1))) | → | 1#(2(0(x1))) | (94) |
| 1#(3(0(2(x1)))) | → | 3#(0(x1)) | (157) |
| 3#(0(2(4(x1)))) | → | 2#(x1) | (183) |
| 2#(1(0(x1))) | → | 1#(3(2(0(x1)))) | (96) |
| 1#(4(2(2(x1)))) | → | 1#(3(2(2(4(x1))))) | (158) |
| 1#(4(2(2(x1)))) | → | 2#(2(4(x1))) | (160) |
| 2#(3(0(x1))) | → | 1#(3(2(0(x1)))) | (103) |
| 1#(4(2(2(x1)))) | → | 2#(4(x1)) | (161) |
| 2#(3(4(x1))) | → | 1#(3(2(4(x1)))) | (118) |
| 1#(2(3(5(0(x1))))) | → | 5#(3(1(3(2(0(x1)))))) | (216) |
| 5#(4(0(3(0(x1))))) | → | 2#(3(4(0(0(5(x1)))))) | (204) |
| 2#(3(4(x1))) | → | 2#(4(x1)) | (120) |
| 2#(5(3(0(x1)))) | → | 5#(3(1(2(0(x1))))) | (139) |
| 5#(4(0(3(0(x1))))) | → | 5#(x1) | (207) |
| 2#(3(5(1(0(x1))))) | → | 1#(2(3(0(5(0(x1)))))) | (186) |
| 1#(0(2(4(2(x1))))) | → | 2#(1(1(2(x1)))) | (231) |
| 2#(3(5(1(0(x1))))) | → | 2#(3(0(5(0(x1))))) | (187) |
| 2#(4(5(1(0(x1))))) | → | 1#(2(5(x1))) | (192) |
| 1#(0(2(4(2(x1))))) | → | 1#(1(2(x1))) | (232) |
| 1#(0(2(4(2(x1))))) | → | 1#(2(x1)) | (233) |
| 1#(4(3(5(2(x1))))) | → | 2#(3(4(0(1(5(x1)))))) | (234) |
| 1#(4(3(5(2(x1))))) | → | 1#(5(x1)) | (237) |
| 1#(4(3(5(2(x1))))) | → | 5#(x1) | (238) |
| 2#(4(5(1(0(x1))))) | → | 2#(5(x1)) | (193) |
| 2#(4(5(1(0(x1))))) | → | 5#(x1) | (194) |
| [1#(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 |
| [2(x1)] | = | 0 |
| [1(x1)] | = | 1 · x1 |
| [3(x1)] | = | 0 |
| [2#(x1)] | = | 0 |
| [3#(x1)] | = | 0 |
| [4(x1)] | = | 1 |
| [5(x1)] | = | 0 |
| [5#(x1)] | = | 0 |
| 2(0(1(0(x1)))) | → | 1(1(1(2(0(0(x1)))))) | (58) |
| 2(0(1(5(4(x1))))) | → | 5(1(2(4(0(1(x1)))))) | (90) |
| 5(4(0(3(0(x1))))) | → | 2(3(4(0(0(5(x1)))))) | (79) |
| 2(3(4(x1))) | → | 1(3(2(4(x1)))) | (56) |
| 1(0(2(x1))) | → | 1(1(2(0(x1)))) | (54) |
| 1(3(0(2(x1)))) | → | 1(1(2(3(0(x1))))) | (66) |
| 1(4(2(2(x1)))) | → | 1(3(2(2(4(x1))))) | (67) |
| 1(2(3(5(0(x1))))) | → | 5(3(1(3(2(0(x1)))))) | (82) |
| 1(4(3(5(2(x1))))) | → | 2(3(4(0(1(5(x1)))))) | (86) |
| 1(4(2(x1))) | → | 1(3(2(4(0(x1))))) | (55) |
| 1(0(1(0(x1)))) | → | 1(1(3(0(0(x1))))) | (57) |
| 1(1(4(2(x1)))) | → | 1(1(4(0(2(x1))))) | (69) |
| 1(0(2(4(2(x1))))) | → | 4(0(2(1(1(2(x1)))))) | (85) |
| 3(0(2(4(x1)))) | → | 3(4(0(3(2(x1))))) | (73) |
| 2(1(0(x1))) | → | 1(2(0(0(x1)))) | (46) |
| 2(1(0(x1))) | → | 3(1(2(0(x1)))) | (47) |
| 2(1(0(x1))) | → | 1(3(2(0(x1)))) | (48) |
| 2(3(0(x1))) | → | 3(2(0(0(x1)))) | (50) |
| 2(3(0(x1))) | → | 1(3(2(0(x1)))) | (51) |
| 2(4(1(0(x1)))) | → | 1(1(2(4(0(x1))))) | (59) |
| 2(4(3(0(x1)))) | → | 1(3(2(4(0(x1))))) | (61) |
| 2(5(3(0(x1)))) | → | 5(3(1(2(0(x1))))) | (62) |
| 2(4(5(0(x1)))) | → | 5(1(2(4(0(x1))))) | (65) |
| 2(3(4(2(x1)))) | → | 3(2(4(0(2(x1))))) | (71) |
| 2(3(5(1(0(x1))))) | → | 1(2(3(0(5(0(x1)))))) | (75) |
| 2(4(5(1(0(x1))))) | → | 3(4(0(1(2(5(x1)))))) | (76) |
| 3(5(4(0(x1)))) | → | 5(3(4(0(0(x1))))) | (63) |
| 3(4(3(2(x1)))) | → | 3(3(4(0(3(2(x1)))))) | (68) |
| 3(1(4(2(x1)))) | → | 1(2(3(4(0(x1))))) | (70) |
| 3(4(5(2(x1)))) | → | 5(3(2(4(0(x1))))) | (72) |
| 3(4(3(4(x1)))) | → | 3(4(0(3(4(x1))))) | (74) |
| 3(4(2(2(0(x1))))) | → | 2(0(3(4(0(2(x1)))))) | (78) |
| 3(4(2(3(0(x1))))) | → | 2(4(3(3(4(0(x1)))))) | (80) |
| 3(5(1(4(2(x1))))) | → | 2(5(3(1(4(0(x1)))))) | (84) |
| 3(2(0(3(4(x1))))) | → | 3(1(3(2(4(0(x1)))))) | (88) |
| 3(2(1(4(4(x1))))) | → | 1(3(2(4(4(0(x1)))))) | (89) |
| 5(4(0(x1))) | → | 5(1(4(0(0(x1))))) | (53) |
| 5(4(5(1(0(x1))))) | → | 5(5(2(1(4(0(x1)))))) | (77) |
| 1#(0(2(x1))) | → | 1#(1(2(0(x1)))) | (111) |
| 1#(0(2(x1))) | → | 1#(2(0(x1))) | (112) |
| 1#(4(2(2(x1)))) | → | 1#(3(2(2(4(x1))))) | (158) |
| 1#(4(2(2(x1)))) | → | 2#(2(4(x1))) | (160) |
| 1#(4(2(2(x1)))) | → | 2#(4(x1)) | (161) |
| 1#(0(2(4(2(x1))))) | → | 2#(1(1(2(x1)))) | (231) |
| 1#(0(2(4(2(x1))))) | → | 1#(1(2(x1))) | (232) |
| 1#(0(2(4(2(x1))))) | → | 1#(2(x1)) | (233) |
| 1#(4(3(5(2(x1))))) | → | 2#(3(4(0(1(5(x1)))))) | (234) |
| 1#(4(3(5(2(x1))))) | → | 1#(5(x1)) | (237) |
| 1#(4(3(5(2(x1))))) | → | 5#(x1) | (238) |
| [1#(x1)] | = | 1 · x1 |
| [3(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 |
| [2(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [2#(x1)] | = | 0 |
| [3#(x1)] | = | 0 |
| [4(x1)] | = | 0 |
| [5(x1)] | = | 0 |
| [5#(x1)] | = | 0 |
| 3(0(2(4(x1)))) | → | 3(4(0(3(2(x1))))) | (73) |
| 2(1(0(x1))) | → | 1(2(0(0(x1)))) | (46) |
| 2(1(0(x1))) | → | 3(1(2(0(x1)))) | (47) |
| 2(1(0(x1))) | → | 1(3(2(0(x1)))) | (48) |
| 2(3(0(x1))) | → | 3(2(0(0(x1)))) | (50) |
| 2(3(0(x1))) | → | 1(3(2(0(x1)))) | (51) |
| 5(4(0(3(0(x1))))) | → | 2(3(4(0(0(5(x1)))))) | (79) |
| 2(3(4(x1))) | → | 1(3(2(4(x1)))) | (56) |
| 1(0(2(x1))) | → | 1(1(2(0(x1)))) | (54) |
| 1(3(0(2(x1)))) | → | 1(1(2(3(0(x1))))) | (66) |
| 1(4(2(2(x1)))) | → | 1(3(2(2(4(x1))))) | (67) |
| 1(2(3(5(0(x1))))) | → | 5(3(1(3(2(0(x1)))))) | (82) |
| 1(4(3(5(2(x1))))) | → | 2(3(4(0(1(5(x1)))))) | (86) |
| 2(0(1(0(x1)))) | → | 1(1(1(2(0(0(x1)))))) | (58) |
| 2(4(1(0(x1)))) | → | 1(1(2(4(0(x1))))) | (59) |
| 2(4(3(0(x1)))) | → | 1(3(2(4(0(x1))))) | (61) |
| 2(5(3(0(x1)))) | → | 5(3(1(2(0(x1))))) | (62) |
| 2(4(5(0(x1)))) | → | 5(1(2(4(0(x1))))) | (65) |
| 2(3(4(2(x1)))) | → | 3(2(4(0(2(x1))))) | (71) |
| 2(3(5(1(0(x1))))) | → | 1(2(3(0(5(0(x1)))))) | (75) |
| 2(4(5(1(0(x1))))) | → | 3(4(0(1(2(5(x1)))))) | (76) |
| 2(0(1(5(4(x1))))) | → | 5(1(2(4(0(1(x1)))))) | (90) |
| 1(4(2(x1))) | → | 1(3(2(4(0(x1))))) | (55) |
| 1(0(1(0(x1)))) | → | 1(1(3(0(0(x1))))) | (57) |
| 1(1(4(2(x1)))) | → | 1(1(4(0(2(x1))))) | (69) |
| 1(0(2(4(2(x1))))) | → | 4(0(2(1(1(2(x1)))))) | (85) |
| 3(5(4(0(x1)))) | → | 5(3(4(0(0(x1))))) | (63) |
| 3(4(3(2(x1)))) | → | 3(3(4(0(3(2(x1)))))) | (68) |
| 3(1(4(2(x1)))) | → | 1(2(3(4(0(x1))))) | (70) |
| 3(4(5(2(x1)))) | → | 5(3(2(4(0(x1))))) | (72) |
| 3(4(3(4(x1)))) | → | 3(4(0(3(4(x1))))) | (74) |
| 3(4(2(2(0(x1))))) | → | 2(0(3(4(0(2(x1)))))) | (78) |
| 3(4(2(3(0(x1))))) | → | 2(4(3(3(4(0(x1)))))) | (80) |
| 3(5(1(4(2(x1))))) | → | 2(5(3(1(4(0(x1)))))) | (84) |
| 3(2(0(3(4(x1))))) | → | 3(1(3(2(4(0(x1)))))) | (88) |
| 3(2(1(4(4(x1))))) | → | 1(3(2(4(4(0(x1)))))) | (89) |
| 5(4(0(x1))) | → | 5(1(4(0(0(x1))))) | (53) |
| 5(4(5(1(0(x1))))) | → | 5(5(2(1(4(0(x1)))))) | (77) |
| 1#(3(0(2(x1)))) | → | 1#(1(2(3(0(x1))))) | (154) |
| 1#(3(0(2(x1)))) | → | 1#(2(3(0(x1)))) | (155) |
| 1#(3(0(2(x1)))) | → | 2#(3(0(x1))) | (156) |
| 1#(3(0(2(x1)))) | → | 3#(0(x1)) | (157) |
The dependency pairs are split into 1 component.
| 1#(2(3(5(0(x1))))) | → | 5#(3(1(3(2(0(x1)))))) | (216) |
| 5#(4(0(3(0(x1))))) | → | 2#(3(4(0(0(5(x1)))))) | (204) |
| 2#(3(4(x1))) | → | 1#(3(2(4(x1)))) | (118) |
| 2#(3(4(x1))) | → | 2#(4(x1)) | (120) |
| 2#(1(0(x1))) | → | 1#(2(0(x1))) | (94) |
| 2#(1(0(x1))) | → | 1#(3(2(0(x1)))) | (96) |
| 2#(3(0(x1))) | → | 1#(3(2(0(x1)))) | (103) |
| 2#(5(3(0(x1)))) | → | 5#(3(1(2(0(x1))))) | (139) |
| 5#(4(0(3(0(x1))))) | → | 5#(x1) | (207) |
| 2#(3(5(1(0(x1))))) | → | 1#(2(3(0(5(0(x1)))))) | (186) |
| 2#(3(5(1(0(x1))))) | → | 2#(3(0(5(0(x1))))) | (187) |
| 2#(4(5(1(0(x1))))) | → | 1#(2(5(x1))) | (192) |
| 2#(4(5(1(0(x1))))) | → | 2#(5(x1)) | (193) |
| 2#(4(5(1(0(x1))))) | → | 5#(x1) | (194) |
| [1#(x1)] | = | 0 |
| [2(x1)] | = | 1 |
| [3(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 |
| [0(x1)] | = | 0 |
| [5#(x1)] | = | 0 |
| [1(x1)] | = | 1 |
| [4(x1)] | = | 1 · x1 |
| [2#(x1)] | = | 1 · x1 |
| 5(4(0(3(0(x1))))) | → | 2(3(4(0(0(5(x1)))))) | (79) |
| 2(3(4(x1))) | → | 1(3(2(4(x1)))) | (56) |
| 1(0(2(x1))) | → | 1(1(2(0(x1)))) | (54) |
| 1(3(0(2(x1)))) | → | 1(1(2(3(0(x1))))) | (66) |
| 1(4(2(2(x1)))) | → | 1(3(2(2(4(x1))))) | (67) |
| 1(2(3(5(0(x1))))) | → | 5(3(1(3(2(0(x1)))))) | (82) |
| 1(4(3(5(2(x1))))) | → | 2(3(4(0(1(5(x1)))))) | (86) |
| 1(4(2(x1))) | → | 1(3(2(4(0(x1))))) | (55) |
| 1(0(1(0(x1)))) | → | 1(1(3(0(0(x1))))) | (57) |
| 1(1(4(2(x1)))) | → | 1(1(4(0(2(x1))))) | (69) |
| 1(0(2(4(2(x1))))) | → | 4(0(2(1(1(2(x1)))))) | (85) |
| 5(4(0(x1))) | → | 5(1(4(0(0(x1))))) | (53) |
| 5(4(5(1(0(x1))))) | → | 5(5(2(1(4(0(x1)))))) | (77) |
| 4(1(0(x1))) | → | 0(0(1(1(4(0(x1)))))) | (49) |
| 4(3(0(x1))) | → | 3(4(0(0(x1)))) | (52) |
| 4(2(3(0(x1)))) | → | 0(3(2(4(0(x1))))) | (60) |
| 4(3(5(0(x1)))) | → | 5(3(3(4(0(x1))))) | (64) |
| 4(5(2(4(0(x1))))) | → | 4(5(1(2(4(0(x1)))))) | (81) |
| 4(1(4(5(0(x1))))) | → | 0(5(1(4(0(4(x1)))))) | (83) |
| 4(5(1(0(4(x1))))) | → | 5(1(4(0(0(4(x1)))))) | (87) |
| 2#(1(0(x1))) | → | 1#(2(0(x1))) | (94) |
| 2#(1(0(x1))) | → | 1#(3(2(0(x1)))) | (96) |
| 2#(5(3(0(x1)))) | → | 5#(3(1(2(0(x1))))) | (139) |
| 2#(3(5(1(0(x1))))) | → | 1#(2(3(0(5(0(x1)))))) | (186) |
| 2#(3(5(1(0(x1))))) | → | 2#(3(0(5(0(x1))))) | (187) |
| 2#(4(5(1(0(x1))))) | → | 1#(2(5(x1))) | (192) |
| 2#(4(5(1(0(x1))))) | → | 5#(x1) | (194) |
| [1#(x1)] | = | 1 |
| [2(x1)] | = | 0 |
| [3(x1)] | = | 1 + 1 · x1 |
| [5(x1)] | = | 0 |
| [0(x1)] | = | 0 |
| [5#(x1)] | = | 1 |
| [1(x1)] | = | 0 |
| [4(x1)] | = | 1 · x1 |
| [2#(x1)] | = | 1 · x1 |
| 5(4(0(3(0(x1))))) | → | 2(3(4(0(0(5(x1)))))) | (79) |
| 2(3(4(x1))) | → | 1(3(2(4(x1)))) | (56) |
| 1(0(2(x1))) | → | 1(1(2(0(x1)))) | (54) |
| 1(3(0(2(x1)))) | → | 1(1(2(3(0(x1))))) | (66) |
| 1(4(2(2(x1)))) | → | 1(3(2(2(4(x1))))) | (67) |
| 1(2(3(5(0(x1))))) | → | 5(3(1(3(2(0(x1)))))) | (82) |
| 1(4(3(5(2(x1))))) | → | 2(3(4(0(1(5(x1)))))) | (86) |
| 1(4(2(x1))) | → | 1(3(2(4(0(x1))))) | (55) |
| 1(0(1(0(x1)))) | → | 1(1(3(0(0(x1))))) | (57) |
| 1(1(4(2(x1)))) | → | 1(1(4(0(2(x1))))) | (69) |
| 1(0(2(4(2(x1))))) | → | 4(0(2(1(1(2(x1)))))) | (85) |
| 5(4(0(x1))) | → | 5(1(4(0(0(x1))))) | (53) |
| 5(4(5(1(0(x1))))) | → | 5(5(2(1(4(0(x1)))))) | (77) |
| 4(1(0(x1))) | → | 0(0(1(1(4(0(x1)))))) | (49) |
| 4(3(0(x1))) | → | 3(4(0(0(x1)))) | (52) |
| 4(2(3(0(x1)))) | → | 0(3(2(4(0(x1))))) | (60) |
| 4(3(5(0(x1)))) | → | 5(3(3(4(0(x1))))) | (64) |
| 4(5(2(4(0(x1))))) | → | 4(5(1(2(4(0(x1)))))) | (81) |
| 4(1(4(5(0(x1))))) | → | 0(5(1(4(0(4(x1)))))) | (83) |
| 4(5(1(0(4(x1))))) | → | 5(1(4(0(0(4(x1)))))) | (87) |
| 2#(3(4(x1))) | → | 2#(4(x1)) | (120) |
The dependency pairs are split into 2 components.
| 2#(4(5(1(0(x1))))) | → | 2#(5(x1)) | (193) |
| [2#(x1)] | = | 1 · x1 |
| [4(x1)] | = | 1 + 1 · x1 |
| [5(x1)] | = | 1 |
| [1(x1)] | = | 1 |
| [0(x1)] | = | 0 |
| [2(x1)] | = | 1 · x1 |
| [3(x1)] | = | 1 |
| 5(4(0(x1))) | → | 5(1(4(0(0(x1))))) | (53) |
| 5(4(5(1(0(x1))))) | → | 5(5(2(1(4(0(x1)))))) | (77) |
| 5(4(0(3(0(x1))))) | → | 2(3(4(0(0(5(x1)))))) | (79) |
| 2(3(4(x1))) | → | 1(3(2(4(x1)))) | (56) |
| 1(0(2(x1))) | → | 1(1(2(0(x1)))) | (54) |
| 1(3(0(2(x1)))) | → | 1(1(2(3(0(x1))))) | (66) |
| 1(4(2(2(x1)))) | → | 1(3(2(2(4(x1))))) | (67) |
| 1(2(3(5(0(x1))))) | → | 5(3(1(3(2(0(x1)))))) | (82) |
| 1(4(3(5(2(x1))))) | → | 2(3(4(0(1(5(x1)))))) | (86) |
| 1(1(4(2(x1)))) | → | 1(1(4(0(2(x1))))) | (69) |
| 1(0(2(4(2(x1))))) | → | 4(0(2(1(1(2(x1)))))) | (85) |
| 1(4(2(x1))) | → | 1(3(2(4(0(x1))))) | (55) |
| 1(0(1(0(x1)))) | → | 1(1(3(0(0(x1))))) | (57) |
| 2#(4(5(1(0(x1))))) | → | 2#(5(x1)) | (193) |
There are no pairs anymore.
| 5#(4(0(3(0(x1))))) | → | 2#(3(4(0(0(5(x1)))))) | (204) |
| 2#(3(4(x1))) | → | 1#(3(2(4(x1)))) | (118) |
| 1#(2(3(5(0(x1))))) | → | 5#(3(1(3(2(0(x1)))))) | (216) |
| 5#(4(0(3(0(x1))))) | → | 5#(x1) | (207) |
| [1#(x1)] | = | -2 + 2 · x1 |
| [5#(x1)] | = | 0 |
| [0(x1)] | = | -2 |
| [2#(x1)] | = | 2 · x1 |
| [3(x1)] | = | x1 |
| [4(x1)] | = | 2 · x1 |
| [5(x1)] | = | 1 + x1 |
| [1(x1)] | = | -1 + x1 |
| [2(x1)] | = | 1 + x1 |
| 1#(2(3(5(0(x1))))) | → | 5#(3(1(3(2(0(x1)))))) | (216) |
The dependency pairs are split into 1 component.
| 5#(4(0(3(0(x1))))) | → | 5#(x1) | (207) |
| [4(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 · x1 |
| [3(x1)] | = | 1 · x1 |
| [5#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 5#(4(0(3(0(x1))))) | → | 5#(x1) | (207) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.
| 4#(1(4(5(0(x1))))) | → | 4#(x1) | (224) |
| [1(x1)] | = | 1 · x1 |
| [4(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 · x1 |
| [4#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 4#(1(4(5(0(x1))))) | → | 4#(x1) | (224) |
| 1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.