The rewrite relation of the following TRS is considered.
0(1(2(x1))) | → | 0(3(1(2(x1)))) | (1) |
0(1(2(x1))) | → | 1(0(2(1(x1)))) | (2) |
0(1(2(x1))) | → | 2(1(4(0(x1)))) | (3) |
0(1(2(x1))) | → | 0(2(1(3(3(x1))))) | (4) |
0(1(2(x1))) | → | 0(2(4(1(3(x1))))) | (5) |
0(1(2(x1))) | → | 1(0(2(5(4(x1))))) | (6) |
0(1(2(x1))) | → | 2(1(1(0(3(x1))))) | (7) |
0(1(2(x1))) | → | 2(1(3(4(0(x1))))) | (8) |
0(1(2(x1))) | → | 2(1(4(3(0(x1))))) | (9) |
0(1(2(x1))) | → | 4(0(3(1(2(x1))))) | (10) |
0(1(2(x1))) | → | 4(1(0(3(2(x1))))) | (11) |
0(1(2(x1))) | → | 4(4(2(1(0(x1))))) | (12) |
0(1(2(x1))) | → | 0(0(4(1(2(5(x1)))))) | (13) |
0(1(2(x1))) | → | 0(4(5(1(2(5(x1)))))) | (14) |
0(1(2(x1))) | → | 0(5(2(3(1(4(x1)))))) | (15) |
0(1(2(x1))) | → | 1(0(2(2(3(4(x1)))))) | (16) |
0(1(2(x1))) | → | 1(1(4(0(3(2(x1)))))) | (17) |
0(1(2(x1))) | → | 2(0(0(3(3(1(x1)))))) | (18) |
0(1(2(x1))) | → | 2(0(3(4(1(5(x1)))))) | (19) |
0(1(2(x1))) | → | 2(3(2(0(4(1(x1)))))) | (20) |
0(1(2(x1))) | → | 2(5(3(0(3(1(x1)))))) | (21) |
0(1(2(x1))) | → | 3(2(5(3(1(0(x1)))))) | (22) |
0(1(2(x1))) | → | 3(4(0(5(1(2(x1)))))) | (23) |
0(1(2(x1))) | → | 5(5(4(2(1(0(x1)))))) | (24) |
0(0(1(2(x1)))) | → | 0(0(2(4(1(x1))))) | (25) |
0(0(1(2(x1)))) | → | 0(2(1(5(0(4(x1)))))) | (26) |
0(0(1(2(x1)))) | → | 1(0(2(3(5(0(x1)))))) | (27) |
0(0(1(2(x1)))) | → | 5(1(2(0(4(0(x1)))))) | (28) |
0(0(5(2(x1)))) | → | 5(3(0(3(0(2(x1)))))) | (29) |
0(1(2(0(x1)))) | → | 1(2(4(0(0(x1))))) | (30) |
0(1(2(0(x1)))) | → | 0(4(1(0(0(2(x1)))))) | (31) |
0(1(2(2(x1)))) | → | 3(3(0(2(1(2(x1)))))) | (32) |
0(1(5(2(x1)))) | → | 2(5(1(0(3(x1))))) | (33) |
0(1(5(2(x1)))) | → | 0(5(5(3(1(2(x1)))))) | (34) |
0(1(5(2(x1)))) | → | 1(3(5(0(2(2(x1)))))) | (35) |
0(5(2(2(x1)))) | → | 3(0(2(1(5(2(x1)))))) | (36) |
1(0(1(2(x1)))) | → | 0(4(1(2(1(x1))))) | (37) |
1(0(1(2(x1)))) | → | 1(2(1(3(0(x1))))) | (38) |
1(0(1(2(x1)))) | → | 0(3(1(4(1(2(x1)))))) | (39) |
1(0(1(2(x1)))) | → | 4(1(4(1(0(2(x1)))))) | (40) |
5(0(1(2(x1)))) | → | 0(2(1(3(5(x1))))) | (41) |
5(0(1(2(x1)))) | → | 2(0(3(1(5(x1))))) | (42) |
5(0(1(2(x1)))) | → | 5(3(1(0(3(2(x1)))))) | (43) |
5(0(1(2(x1)))) | → | 5(5(1(0(2(4(x1)))))) | (44) |
0(1(0(2(2(x1))))) | → | 3(0(2(1(0(2(x1)))))) | (45) |
0(1(2(5(2(x1))))) | → | 3(5(1(2(2(0(x1)))))) | (46) |
0(1(3(0(0(x1))))) | → | 0(0(4(1(3(0(x1)))))) | (47) |
0(1(4(2(2(x1))))) | → | 0(2(4(1(5(2(x1)))))) | (48) |
0(1(4(2(2(x1))))) | → | 0(2(4(2(1(1(x1)))))) | (49) |
1(3(0(1(2(x1))))) | → | 1(3(4(1(0(2(x1)))))) | (50) |
There are 125 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
0#(1(2(x1))) | → | 1#(x1) | (54) |
1#(0(1(2(x1)))) | → | 1#(x1) | (137) |
1#(0(1(2(x1)))) | → | 0#(x1) | (140) |
0#(1(2(x1))) | → | 0#(x1) | (56) |
0#(1(2(x1))) | → | 1#(0(x1)) | (71) |
0#(1(2(x1))) | → | 5#(x1) | (75) |
5#(0(1(2(x1)))) | → | 5#(x1) | (148) |
5#(0(1(2(x1)))) | → | 1#(5(x1)) | (150) |
0#(1(2(x1))) | → | 1#(5(x1)) | (88) |
0#(0(1(2(x1)))) | → | 1#(x1) | (99) |
0#(0(1(2(x1)))) | → | 5#(0(x1)) | (106) |
0#(0(1(2(x1)))) | → | 0#(x1) | (107) |
0#(1(2(0(x1)))) | → | 0#(0(x1)) | (115) |
0#(1(2(5(2(x1))))) | → | 0#(x1) | (163) |
0#(1(4(2(2(x1))))) | → | 1#(1(x1)) | (171) |
0#(1(4(2(2(x1))))) | → | 1#(x1) | (172) |
[0#(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[5#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
0#(1(2(5(2(x1))))) | → | 0#(x1) | (163) |
[0#(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[5#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
0#(0(1(2(x1)))) | → | 5#(0(x1)) | (106) |
[0#(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[5#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
5#(0(1(2(x1)))) | → | 5#(x1) | (148) |
5#(0(1(2(x1)))) | → | 1#(5(x1)) | (150) |
The dependency pairs are split into 1 component.
1#(0(1(2(x1)))) | → | 1#(x1) | (137) |
1#(0(1(2(x1)))) | → | 0#(x1) | (140) |
0#(1(2(x1))) | → | 1#(x1) | (54) |
0#(1(2(x1))) | → | 0#(x1) | (56) |
0#(1(2(x1))) | → | 1#(0(x1)) | (71) |
0#(1(2(x1))) | → | 1#(5(x1)) | (88) |
0#(0(1(2(x1)))) | → | 1#(x1) | (99) |
0#(0(1(2(x1)))) | → | 0#(x1) | (107) |
0#(1(2(0(x1)))) | → | 0#(0(x1)) | (115) |
0#(1(4(2(2(x1))))) | → | 1#(1(x1)) | (171) |
0#(1(4(2(2(x1))))) | → | 1#(x1) | (172) |
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[0#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
0#(0(1(2(x1)))) | → | 1#(x1) | (99) |
0#(0(1(2(x1)))) | → | 0#(x1) | (107) |
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[0#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
1#(0(1(2(x1)))) | → | 1#(x1) | (137) |
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[0#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
0#(1(2(0(x1)))) | → | 0#(0(x1)) | (115) |
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[0#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
0#(1(4(2(2(x1))))) | → | 1#(1(x1)) | (171) |
[1#(x1)] | = |
|
||||||||||||||||||
[0(x1)] | = |
|
||||||||||||||||||
[1(x1)] | = |
|
||||||||||||||||||
[2(x1)] | = |
|
||||||||||||||||||
[0#(x1)] | = |
|
||||||||||||||||||
[5(x1)] | = |
|
||||||||||||||||||
[4(x1)] | = |
|
||||||||||||||||||
[3(x1)] | = |
|
1#(0(1(2(x1)))) | → | 0#(x1) | (140) |
The dependency pairs are split into 1 component.
0#(1(2(x1))) | → | 0#(x1) | (56) |
[1(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 · x1 |
[0#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
0#(1(2(x1))) | → | 0#(x1) | (56) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.