The rewrite relation of the following TRS is considered.
| 0(0(x1)) | → | 0(1(2(0(1(1(x1)))))) | (1) |
| 0(0(x1)) | → | 1(0(1(0(1(1(x1)))))) | (2) |
| 3(0(x1)) | → | 1(0(1(1(1(3(x1)))))) | (3) |
| 0(0(0(x1))) | → | 0(0(1(1(0(x1))))) | (4) |
| 0(0(3(x1))) | → | 0(3(1(0(1(1(x1)))))) | (5) |
| 2(3(0(x1))) | → | 2(1(0(1(1(3(x1)))))) | (6) |
| 3(0(0(x1))) | → | 3(0(1(0(1(1(x1)))))) | (7) |
| 3(0(4(x1))) | → | 3(1(0(1(1(4(x1)))))) | (8) |
| 5(0(3(x1))) | → | 3(0(1(1(5(x1))))) | (9) |
| 5(0(3(x1))) | → | 3(5(0(1(1(x1))))) | (10) |
| 0(0(0(4(x1)))) | → | 2(0(2(0(0(4(x1)))))) | (11) |
| 0(0(1(3(x1)))) | → | 0(3(1(0(1(1(x1)))))) | (12) |
| 0(0(2(4(x1)))) | → | 0(2(2(0(4(x1))))) | (13) |
| 0(2(1(3(x1)))) | → | 0(1(2(3(4(x1))))) | (14) |
| 0(2(1(3(x1)))) | → | 2(0(1(3(4(x1))))) | (15) |
| 0(2(1(4(x1)))) | → | 2(0(1(1(4(x1))))) | (16) |
| 0(2(3(0(x1)))) | → | 2(3(4(0(0(x1))))) | (17) |
| 0(2(3(0(x1)))) | → | 2(0(1(2(3(0(x1)))))) | (18) |
| 0(2(5(4(x1)))) | → | 2(2(4(5(0(x1))))) | (19) |
| 0(2(5(4(x1)))) | → | 4(5(1(2(0(x1))))) | (20) |
| 0(4(1(0(x1)))) | → | 0(0(1(1(4(x1))))) | (21) |
| 0(5(5(4(x1)))) | → | 2(4(5(5(1(0(x1)))))) | (22) |
| 2(3(0(0(x1)))) | → | 0(1(1(2(3(0(x1)))))) | (23) |
| 2(3(0(0(x1)))) | → | 0(1(2(1(3(0(x1)))))) | (24) |
| 3(0(0(3(x1)))) | → | 3(0(3(0(1(1(x1)))))) | (25) |
| 3(0(2(0(x1)))) | → | 0(3(0(1(2(1(x1)))))) | (26) |
| 3(0(4(0(x1)))) | → | 3(0(0(1(1(4(x1)))))) | (27) |
| 3(0(5(0(x1)))) | → | 5(0(3(0(1(1(x1)))))) | (28) |
| 3(1(0(0(x1)))) | → | 1(1(1(3(0(0(x1)))))) | (29) |
| 3(1(0(4(x1)))) | → | 1(1(1(3(4(0(x1)))))) | (30) |
| 3(2(1(4(x1)))) | → | 1(1(2(2(4(3(x1)))))) | (31) |
| 3(2(1(4(x1)))) | → | 1(2(1(3(1(4(x1)))))) | (32) |
| 4(1(0(0(x1)))) | → | 0(0(1(1(4(1(x1)))))) | (33) |
| 4(1(0(4(x1)))) | → | 4(0(1(1(4(x1))))) | (34) |
| 5(1(0(3(x1)))) | → | 5(3(0(1(1(1(x1)))))) | (35) |
| 5(5(0(4(x1)))) | → | 5(5(1(0(4(x1))))) | (36) |
| 5(5(0(4(x1)))) | → | 0(1(1(5(5(4(x1)))))) | (37) |
| 5(5(4(3(x1)))) | → | 3(4(5(5(1(x1))))) | (38) |
| 0(1(4(3(3(x1))))) | → | 0(1(1(4(3(3(x1)))))) | (39) |
| 0(2(1(5(3(x1))))) | → | 0(5(2(1(1(3(x1)))))) | (40) |
| 0(2(5(2(3(x1))))) | → | 0(3(5(2(1(2(x1)))))) | (41) |
| 0(2(5(3(0(x1))))) | → | 0(1(2(5(3(0(x1)))))) | (42) |
| 2(5(1(0(4(x1))))) | → | 5(0(1(1(4(2(x1)))))) | (43) |
| 3(5(1(0(4(x1))))) | → | 3(5(0(1(1(4(x1)))))) | (44) |
| 4(0(1(0(3(x1))))) | → | 4(0(3(0(1(1(x1)))))) | (45) |
| 4(1(4(4(0(x1))))) | → | 4(0(4(1(1(4(x1)))))) | (46) |
| 4(2(3(5(4(x1))))) | → | 2(2(4(4(5(3(x1)))))) | (47) |
| 4(2(5(0(4(x1))))) | → | 4(4(1(0(5(2(x1)))))) | (48) |
| 4(4(5(0(0(x1))))) | → | 4(4(0(1(5(0(x1)))))) | (49) |
| 0(0(x1)) | → | 1(1(0(2(1(0(x1)))))) | (50) |
| 0(0(x1)) | → | 1(1(0(1(0(1(x1)))))) | (51) |
| 0(3(x1)) | → | 3(1(1(1(0(1(x1)))))) | (52) |
| 0(0(0(x1))) | → | 0(1(1(0(0(x1))))) | (53) |
| 3(0(0(x1))) | → | 1(1(0(1(3(0(x1)))))) | (54) |
| 0(3(2(x1))) | → | 3(1(1(0(1(2(x1)))))) | (55) |
| 0(0(3(x1))) | → | 1(1(0(1(0(3(x1)))))) | (56) |
| 4(0(3(x1))) | → | 4(1(1(0(1(3(x1)))))) | (57) |
| 3(0(5(x1))) | → | 5(1(1(0(3(x1))))) | (58) |
| 3(0(5(x1))) | → | 1(1(0(5(3(x1))))) | (59) |
| 4(0(0(0(x1)))) | → | 4(0(0(2(0(2(x1)))))) | (60) |
| 3(1(0(0(x1)))) | → | 1(1(0(1(3(0(x1)))))) | (61) |
| 4(2(0(0(x1)))) | → | 4(0(2(2(0(x1))))) | (62) |
| 3(1(2(0(x1)))) | → | 4(3(2(1(0(x1))))) | (63) |
| 3(1(2(0(x1)))) | → | 4(3(1(0(2(x1))))) | (64) |
| 4(1(2(0(x1)))) | → | 4(1(1(0(2(x1))))) | (65) |
| 0(3(2(0(x1)))) | → | 0(0(4(3(2(x1))))) | (66) |
| 0(3(2(0(x1)))) | → | 0(3(2(1(0(2(x1)))))) | (67) |
| 4(5(2(0(x1)))) | → | 0(5(4(2(2(x1))))) | (68) |
| 4(5(2(0(x1)))) | → | 0(2(1(5(4(x1))))) | (69) |
| 0(1(4(0(x1)))) | → | 4(1(1(0(0(x1))))) | (70) |
| 4(5(5(0(x1)))) | → | 0(1(5(5(4(2(x1)))))) | (71) |
| 0(0(3(2(x1)))) | → | 0(3(2(1(1(0(x1)))))) | (72) |
| 0(0(3(2(x1)))) | → | 0(3(1(2(1(0(x1)))))) | (73) |
| 3(0(0(3(x1)))) | → | 1(1(0(3(0(3(x1)))))) | (74) |
| 0(2(0(3(x1)))) | → | 1(2(1(0(3(0(x1)))))) | (75) |
| 0(4(0(3(x1)))) | → | 4(1(1(0(0(3(x1)))))) | (76) |
| 0(5(0(3(x1)))) | → | 1(1(0(3(0(5(x1)))))) | (77) |
| 0(0(1(3(x1)))) | → | 0(0(3(1(1(1(x1)))))) | (78) |
| 4(0(1(3(x1)))) | → | 0(4(3(1(1(1(x1)))))) | (79) |
| 4(1(2(3(x1)))) | → | 3(4(2(2(1(1(x1)))))) | (80) |
| 4(1(2(3(x1)))) | → | 4(1(3(1(2(1(x1)))))) | (81) |
| 0(0(1(4(x1)))) | → | 1(4(1(1(0(0(x1)))))) | (82) |
| 4(0(1(4(x1)))) | → | 4(1(1(0(4(x1))))) | (83) |
| 3(0(1(5(x1)))) | → | 1(1(1(0(3(5(x1)))))) | (84) |
| 4(0(5(5(x1)))) | → | 4(0(1(5(5(x1))))) | (85) |
| 4(0(5(5(x1)))) | → | 4(5(5(1(1(0(x1)))))) | (86) |
| 3(4(5(5(x1)))) | → | 1(5(5(4(3(x1))))) | (87) |
| 3(3(4(1(0(x1))))) | → | 3(3(4(1(1(0(x1)))))) | (88) |
| 3(5(1(2(0(x1))))) | → | 3(1(1(2(5(0(x1)))))) | (89) |
| 3(2(5(2(0(x1))))) | → | 2(1(2(5(3(0(x1)))))) | (90) |
| 0(3(5(2(0(x1))))) | → | 0(3(5(2(1(0(x1)))))) | (91) |
| 4(0(1(5(2(x1))))) | → | 2(4(1(1(0(5(x1)))))) | (92) |
| 4(0(1(5(3(x1))))) | → | 4(1(1(0(5(3(x1)))))) | (93) |
| 3(0(1(0(4(x1))))) | → | 1(1(0(3(0(4(x1)))))) | (94) |
| 0(4(4(1(4(x1))))) | → | 4(1(1(4(0(4(x1)))))) | (95) |
| 4(5(3(2(4(x1))))) | → | 3(5(4(4(2(2(x1)))))) | (96) |
| 4(0(5(2(4(x1))))) | → | 2(5(0(1(4(4(x1)))))) | (97) |
| 0(0(5(4(4(x1))))) | → | 0(5(1(0(4(4(x1)))))) | (98) |
{0(☐), 1(☐), 2(☐), 3(☐), 4(☐), 5(☐)}
We obtain the transformed TRSThere are 199 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 1194 ruless (increase limit for explicit display).
| [00(x1)] | = | 1 · x1 + 110 |
| [01(x1)] | = | 1 · x1 + 50 |
| [11(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 47 |
| [03(x1)] | = | 1 · x1 + 50 |
| [02(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 + 122 |
| [40(x1)] | = | 1 · x1 + 74 |
| [30(x1)] | = | 1 · x1 + 68 |
| [41(x1)] | = | 1 · x1 + 1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 + 9 |
| [34(x1)] | = | 1 · x1 + 43 |
| [33(x1)] | = | 1 · x1 + 14 |
| [32(x1)] | = | 1 · x1 + 43 |
| [35(x1)] | = | 1 · x1 + 81 |
| [20(x1)] | = | 1 · x1 + 110 |
| [21(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 + 46 |
| [23(x1)] | = | 1 · x1 + 38 |
| [22(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 + 37 |
| [42(x1)] | = | 1 · x1 + 1 |
| [12(x1)] | = | 1 · x1 |
| [43(x1)] | = | 1 · x1 + 2 |
| [14(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 + 47 |
| [44(x1)] | = | 1 · x1 + 75 |
| [45(x1)] | = | 1 · x1 + 129 |
| [55(x1)] | = | 1 · x1 + 74 |
| [50(x1)] | = | 1 · x1 + 115 |
| [51(x1)] | = | 1 · x1 + 2 |
| [54(x1)] | = | 1 · x1 + 81 |
| [53(x1)] | = | 1 · x1 + 60 |
| [52(x1)] | = | 1 · x1 + 36 |
There are 1163 ruless (increase limit for explicit display).
| 40#(00(00(00(x1)))) | → | 40#(00(02(20(02(20(x1)))))) | (1473) |
| 40#(00(00(00(x1)))) | → | 00#(02(20(02(20(x1))))) | (1474) |
| 40#(00(00(02(x1)))) | → | 40#(00(02(20(02(22(x1)))))) | (1475) |
| 40#(00(00(02(x1)))) | → | 00#(02(20(02(22(x1))))) | (1476) |
| 00#(01(13(31(x1)))) | → | 00#(03(31(11(11(11(x1)))))) | (1477) |
| 00#(01(13(31(x1)))) | → | 03#(31(11(11(11(x1))))) | (1478) |
| 33#(34(41(10(00(x1))))) | → | 33#(34(41(11(10(00(x1)))))) | (1479) |
| 33#(34(41(10(01(x1))))) | → | 33#(34(41(11(10(01(x1)))))) | (1480) |
| 33#(34(41(10(04(x1))))) | → | 33#(34(41(11(10(04(x1)))))) | (1481) |
| 33#(34(41(10(03(x1))))) | → | 33#(34(41(11(10(03(x1)))))) | (1482) |
| 33#(34(41(10(02(x1))))) | → | 33#(34(41(11(10(02(x1)))))) | (1483) |
| 33#(34(41(10(05(x1))))) | → | 33#(34(41(11(10(05(x1)))))) | (1484) |
| 10#(03(31(x1))) | → | 13#(31(11(11(10(01(11(x1))))))) | (1485) |
| 10#(03(31(x1))) | → | 10#(01(11(x1))) | (1486) |
| 10#(02(20(03(30(x1))))) | → | 10#(03(30(00(x1)))) | (1487) |
| 10#(02(20(03(30(x1))))) | → | 03#(30(00(x1))) | (1488) |
| 10#(02(20(03(30(x1))))) | → | 00#(x1) | (1489) |
| 10#(05(50(03(30(x1))))) | → | 10#(03(30(05(50(x1))))) | (1490) |
| 10#(05(50(03(30(x1))))) | → | 03#(30(05(50(x1)))) | (1491) |
| 10#(00(01(14(41(x1))))) | → | 10#(00(01(x1))) | (1492) |
| 10#(00(01(14(41(x1))))) | → | 00#(01(x1)) | (1493) |
| 03#(30(01(10(04(40(x1)))))) | → | 10#(03(30(04(40(x1))))) | (1494) |
| 03#(30(01(10(04(40(x1)))))) | → | 03#(30(04(40(x1)))) | (1495) |
| 03#(30(01(10(04(41(x1)))))) | → | 10#(03(30(04(41(x1))))) | (1496) |
| 03#(30(01(10(04(41(x1)))))) | → | 03#(30(04(41(x1)))) | (1497) |
| 03#(30(01(10(04(44(x1)))))) | → | 10#(03(30(04(44(x1))))) | (1498) |
| 03#(30(01(10(04(44(x1)))))) | → | 03#(30(04(44(x1)))) | (1499) |
| 03#(30(01(10(04(43(x1)))))) | → | 10#(03(30(04(43(x1))))) | (1500) |
| 03#(30(01(10(04(43(x1)))))) | → | 03#(30(04(43(x1)))) | (1501) |
| 03#(30(01(10(04(42(x1)))))) | → | 10#(03(30(04(42(x1))))) | (1502) |
| 03#(30(01(10(04(42(x1)))))) | → | 03#(30(04(42(x1)))) | (1503) |
| 03#(30(01(10(04(45(x1)))))) | → | 10#(03(30(04(45(x1))))) | (1504) |
| 03#(30(01(10(04(45(x1)))))) | → | 03#(30(04(45(x1)))) | (1505) |
| 13#(30(01(10(04(40(x1)))))) | → | 10#(03(30(04(40(x1))))) | (1506) |
| 13#(30(01(10(04(40(x1)))))) | → | 03#(30(04(40(x1)))) | (1507) |
| 13#(30(01(10(04(41(x1)))))) | → | 10#(03(30(04(41(x1))))) | (1508) |
| 13#(30(01(10(04(41(x1)))))) | → | 03#(30(04(41(x1)))) | (1509) |
| 13#(30(01(10(04(44(x1)))))) | → | 10#(03(30(04(44(x1))))) | (1510) |
| 13#(30(01(10(04(44(x1)))))) | → | 03#(30(04(44(x1)))) | (1511) |
| 13#(30(01(10(04(43(x1)))))) | → | 10#(03(30(04(43(x1))))) | (1512) |
| 13#(30(01(10(04(43(x1)))))) | → | 03#(30(04(43(x1)))) | (1513) |
| 13#(30(01(10(04(42(x1)))))) | → | 10#(03(30(04(42(x1))))) | (1514) |
| 13#(30(01(10(04(42(x1)))))) | → | 03#(30(04(42(x1)))) | (1515) |
| 13#(30(01(10(04(45(x1)))))) | → | 10#(03(30(04(45(x1))))) | (1516) |
| 13#(30(01(10(04(45(x1)))))) | → | 03#(30(04(45(x1)))) | (1517) |
| 40#(04(44(41(14(40(x1)))))) | → | 40#(04(40(x1))) | (1518) |
| 40#(04(44(41(14(41(x1)))))) | → | 40#(04(41(x1))) | (1519) |
| 40#(04(44(41(14(44(x1)))))) | → | 40#(04(44(x1))) | (1520) |
| 40#(04(44(41(14(43(x1)))))) | → | 40#(04(43(x1))) | (1521) |
| 40#(04(44(41(14(42(x1)))))) | → | 40#(04(42(x1))) | (1522) |
| 40#(04(44(41(14(45(x1)))))) | → | 40#(04(45(x1))) | (1523) |
The dependency pairs are split into 2 components.
| 40#(04(44(41(14(44(x1)))))) | → | 40#(04(44(x1))) | (1520) |
| [04(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [40#(x1)] | = | 1 · x1 |
| [40#(x1)] | = | 2 + 2 · x1 |
| [04(x1)] | = | 1 + 2 · x1 |
| [44(x1)] | = | 2 · x1 |
| [41(x1)] | = | 2 · x1 |
| [14(x1)] | = | 2 + 2 · x1 |
| 40#(04(44(41(14(44(x1)))))) | → | 40#(04(44(x1))) | (1520) |
There are no pairs anymore.
| 10#(00(01(14(41(x1))))) | → | 10#(00(01(x1))) | (1492) |
| [00(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [10#(x1)] | = | 1 · x1 |
| 00(01(13(31(x1)))) | → | 00(03(31(11(11(11(x1)))))) | (334) |
20
Hence, it suffices to show innermost termination in the following.| [10#(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 + 1 · x1 |
| [14(x1)] | = | 1 + 1 · x1 |
| [41(x1)] | = | 1 + 1 · x1 |
| [13(x1)] | = | 1 + 1 · x1 |
| [31(x1)] | = | 1 + 1 · x1 |
| [03(x1)] | = | 1 + 1 · x1 |
| [11(x1)] | = | 1 |
| 10#(00(01(14(41(x1))))) | → | 10#(00(01(x1))) | (1492) |
There are no pairs anymore.