The rewrite relation of the following TRS is considered.
| 0(0(1(x1))) | → | 2(0(3(3(0(1(x1)))))) | (1) |
| 0(1(0(x1))) | → | 0(1(3(4(0(3(x1)))))) | (2) |
| 0(1(0(x1))) | → | 2(0(3(0(1(4(x1)))))) | (3) |
| 0(1(1(x1))) | → | 0(3(1(3(1(x1))))) | (4) |
| 0(1(1(x1))) | → | 1(3(0(1(4(x1))))) | (5) |
| 0(1(1(x1))) | → | 0(1(3(1(3(1(x1)))))) | (6) |
| 0(1(1(x1))) | → | 1(3(2(1(3(0(x1)))))) | (7) |
| 0(1(1(x1))) | → | 1(3(3(1(4(0(x1)))))) | (8) |
| 0(1(1(x1))) | → | 3(0(3(1(5(1(x1)))))) | (9) |
| 0(1(1(x1))) | → | 5(0(3(1(5(1(x1)))))) | (10) |
| 0(5(0(x1))) | → | 3(0(3(5(0(x1))))) | (11) |
| 0(5(0(x1))) | → | 3(5(0(0(3(x1))))) | (12) |
| 0(5(0(x1))) | → | 5(0(3(0(2(x1))))) | (13) |
| 0(5(0(x1))) | → | 5(0(3(3(0(x1))))) | (14) |
| 0(5(0(x1))) | → | 4(5(0(3(3(0(x1)))))) | (15) |
| 0(5(0(x1))) | → | 4(5(0(3(5(0(x1)))))) | (16) |
| 0(5(0(x1))) | → | 5(3(0(1(3(0(x1)))))) | (17) |
| 2(0(0(x1))) | → | 0(3(0(3(2(x1))))) | (18) |
| 2(0(0(x1))) | → | 0(3(3(0(2(3(x1)))))) | (19) |
| 2(0(0(x1))) | → | 0(3(5(2(0(3(x1)))))) | (20) |
| 5(1(0(x1))) | → | 3(5(0(1(4(3(x1)))))) | (21) |
| 5(1(0(x1))) | → | 3(5(1(4(0(3(x1)))))) | (22) |
| 5(1(1(x1))) | → | 3(1(5(1(x1)))) | (23) |
| 5(1(1(x1))) | → | 1(3(1(3(5(x1))))) | (24) |
| 5(1(1(x1))) | → | 1(3(3(3(5(1(x1)))))) | (25) |
| 5(1(1(x1))) | → | 1(3(5(5(1(4(x1)))))) | (26) |
| 0(2(0(1(x1)))) | → | 0(2(3(3(0(1(x1)))))) | (27) |
| 0(5(1(0(x1)))) | → | 0(0(1(3(5(x1))))) | (28) |
| 0(5(4(0(x1)))) | → | 0(4(5(0(3(x1))))) | (29) |
| 2(0(2(0(x1)))) | → | 3(0(3(0(2(2(x1)))))) | (30) |
| 2(0(4(1(x1)))) | → | 2(3(0(1(4(4(x1)))))) | (31) |
| 2(0(5(0(x1)))) | → | 0(0(3(5(2(x1))))) | (32) |
| 2(2(4(1(x1)))) | → | 3(2(4(3(2(1(x1)))))) | (33) |
| 5(1(0(1(x1)))) | → | 0(5(1(4(3(1(x1)))))) | (34) |
| 5(1(1(0(x1)))) | → | 0(5(1(5(1(x1))))) | (35) |
| 5(1(2(0(x1)))) | → | 3(1(3(5(0(2(x1)))))) | (36) |
| 5(1(5(0(x1)))) | → | 5(3(5(0(1(x1))))) | (37) |
| 5(2(0(1(x1)))) | → | 5(1(0(3(2(x1))))) | (38) |
| 5(3(1(1(x1)))) | → | 5(3(1(3(1(5(x1)))))) | (39) |
| 5(4(1(1(x1)))) | → | 5(1(4(1(4(5(x1)))))) | (40) |
| 5(5(1(0(x1)))) | → | 5(0(5(1(3(x1))))) | (41) |
| 5(5(1(1(x1)))) | → | 5(1(3(5(0(1(x1)))))) | (42) |
| 0(2(4(1(0(x1))))) | → | 2(4(0(0(1(3(x1)))))) | (43) |
| 0(5(5(1(1(x1))))) | → | 5(1(3(5(0(1(x1)))))) | (44) |
| 2(2(2(4(1(x1))))) | → | 1(2(2(1(4(2(x1)))))) | (45) |
| 2(5(0(1(1(x1))))) | → | 5(1(2(0(1(3(x1)))))) | (46) |
| 5(0(2(4(1(x1))))) | → | 5(1(4(0(3(2(x1)))))) | (47) |
| 5(2(4(1(0(x1))))) | → | 0(2(3(4(5(1(x1)))))) | (48) |
| 5(3(0(4(1(x1))))) | → | 5(3(0(1(4(1(x1)))))) | (49) |
| 5(3(4(1(1(x1))))) | → | 1(4(3(5(2(1(x1)))))) | (50) |
| 1(0(0(x1))) | → | 1(0(3(3(0(2(x1)))))) | (51) |
| 0(1(0(x1))) | → | 3(0(4(3(1(0(x1)))))) | (52) |
| 0(1(0(x1))) | → | 4(1(0(3(0(2(x1)))))) | (53) |
| 1(1(0(x1))) | → | 1(3(1(3(0(x1))))) | (54) |
| 1(1(0(x1))) | → | 4(1(0(3(1(x1))))) | (55) |
| 1(1(0(x1))) | → | 1(3(1(3(1(0(x1)))))) | (56) |
| 1(1(0(x1))) | → | 0(3(1(2(3(1(x1)))))) | (57) |
| 1(1(0(x1))) | → | 0(4(1(3(3(1(x1)))))) | (58) |
| 1(1(0(x1))) | → | 1(5(1(3(0(3(x1)))))) | (59) |
| 1(1(0(x1))) | → | 1(5(1(3(0(5(x1)))))) | (60) |
| 0(5(0(x1))) | → | 0(5(3(0(3(x1))))) | (61) |
| 0(5(0(x1))) | → | 3(0(0(5(3(x1))))) | (62) |
| 0(5(0(x1))) | → | 2(0(3(0(5(x1))))) | (63) |
| 0(5(0(x1))) | → | 0(3(3(0(5(x1))))) | (64) |
| 0(5(0(x1))) | → | 0(3(3(0(5(4(x1)))))) | (65) |
| 0(5(0(x1))) | → | 0(5(3(0(5(4(x1)))))) | (66) |
| 0(5(0(x1))) | → | 0(3(1(0(3(5(x1)))))) | (67) |
| 0(0(2(x1))) | → | 2(3(0(3(0(x1))))) | (68) |
| 0(0(2(x1))) | → | 3(2(0(3(3(0(x1)))))) | (69) |
| 0(0(2(x1))) | → | 3(0(2(5(3(0(x1)))))) | (70) |
| 0(1(5(x1))) | → | 3(4(1(0(5(3(x1)))))) | (71) |
| 0(1(5(x1))) | → | 3(0(4(1(5(3(x1)))))) | (72) |
| 1(1(5(x1))) | → | 1(5(1(3(x1)))) | (73) |
| 1(1(5(x1))) | → | 5(3(1(3(1(x1))))) | (74) |
| 1(1(5(x1))) | → | 1(5(3(3(3(1(x1)))))) | (75) |
| 1(1(5(x1))) | → | 4(1(5(5(3(1(x1)))))) | (76) |
| 1(0(2(0(x1)))) | → | 1(0(3(3(2(0(x1)))))) | (77) |
| 0(1(5(0(x1)))) | → | 5(3(1(0(0(x1))))) | (78) |
| 0(4(5(0(x1)))) | → | 3(0(5(4(0(x1))))) | (79) |
| 0(2(0(2(x1)))) | → | 2(2(0(3(0(3(x1)))))) | (80) |
| 1(4(0(2(x1)))) | → | 4(4(1(0(3(2(x1)))))) | (81) |
| 0(5(0(2(x1)))) | → | 2(5(3(0(0(x1))))) | (82) |
| 1(4(2(2(x1)))) | → | 1(2(3(4(2(3(x1)))))) | (83) |
| 1(0(1(5(x1)))) | → | 1(3(4(1(5(0(x1)))))) | (84) |
| 0(1(1(5(x1)))) | → | 1(5(1(5(0(x1))))) | (85) |
| 0(2(1(5(x1)))) | → | 2(0(5(3(1(3(x1)))))) | (86) |
| 0(5(1(5(x1)))) | → | 1(0(5(3(5(x1))))) | (87) |
| 1(0(2(5(x1)))) | → | 2(3(0(1(5(x1))))) | (88) |
| 1(1(3(5(x1)))) | → | 5(1(3(1(3(5(x1)))))) | (89) |
| 1(1(4(5(x1)))) | → | 5(4(1(4(1(5(x1)))))) | (90) |
| 0(1(5(5(x1)))) | → | 3(1(5(0(5(x1))))) | (91) |
| 1(1(5(5(x1)))) | → | 1(0(5(3(1(5(x1)))))) | (92) |
| 0(1(4(2(0(x1))))) | → | 3(1(0(0(4(2(x1)))))) | (93) |
| 1(1(5(5(0(x1))))) | → | 1(0(5(3(1(5(x1)))))) | (94) |
| 1(4(2(2(2(x1))))) | → | 2(4(1(2(2(1(x1)))))) | (95) |
| 1(1(0(5(2(x1))))) | → | 3(1(0(2(1(5(x1)))))) | (96) |
| 1(4(2(0(5(x1))))) | → | 2(3(0(4(1(5(x1)))))) | (97) |
| 0(1(4(2(5(x1))))) | → | 1(5(4(3(2(0(x1)))))) | (98) |
| 1(4(0(3(5(x1))))) | → | 1(4(1(0(3(5(x1)))))) | (99) |
| 1(1(4(3(5(x1))))) | → | 1(2(5(3(4(1(x1)))))) | (100) |
{1(☐), 0(☐), 3(☐), 2(☐), 4(☐), 5(☐)}
We obtain the transformed TRSThere are 205 ruless (increase limit for explicit display).
Root-labeling is applied.
We obtain the labeled TRSThere are 1230 ruless (increase limit for explicit display).
| [10(x1)] | = | 1 · x1 + 31 |
| [00(x1)] | = | 1 · x1 + 31 |
| [01(x1)] | = | 1 · x1 + 31 |
| [03(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 + 3 |
| [02(x1)] | = | 1 · x1 + 18 |
| [21(x1)] | = | 1 · x1 + 21 |
| [20(x1)] | = | 1 · x1 + 24 |
| [23(x1)] | = | 1 · x1 + 9 |
| [22(x1)] | = | 1 · x1 + 27 |
| [05(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 1 |
| [24(x1)] | = | 1 · x1 + 11 |
| [11(x1)] | = | 1 · x1 + 31 |
| [13(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 + 31 |
| [32(x1)] | = | 1 · x1 + 6 |
| [35(x1)] | = | 1 · x1 |
| [34(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 + 31 |
| [53(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 + 18 |
| [55(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 + 1 |
| [41(x1)] | = | 1 · x1 + 2 |
| [40(x1)] | = | 1 · x1 + 33 |
| [43(x1)] | = | 1 · x1 + 1 |
| [42(x1)] | = | 1 · x1 + 8 |
| [45(x1)] | = | 1 · x1 + 2 |
| [44(x1)] | = | 1 · x1 + 15 |
| [12(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 + 16 |
There are 1128 ruless (increase limit for explicit display).
| [10(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 + 1 |
| [03(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 + 1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| 10(00(04(x1))) | → | 10(03(33(30(02(24(x1)))))) | (292) |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 + 1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [44(x1)] | = | 1 · x1 |
| [32(x1)] | = | 1 · x1 |
| [20(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 |
| [24(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| 41(14(40(02(21(x1))))) | → | 44(44(41(10(03(32(21(x1))))))) | (1037) |
| 41(14(40(02(20(x1))))) | → | 44(44(41(10(03(32(20(x1))))))) | (1038) |
| 41(14(40(02(23(x1))))) | → | 44(44(41(10(03(32(23(x1))))))) | (1039) |
| 41(14(40(02(22(x1))))) | → | 44(44(41(10(03(32(22(x1))))))) | (1040) |
| 41(14(40(02(25(x1))))) | → | 44(44(41(10(03(32(25(x1))))))) | (1041) |
| 41(14(40(02(24(x1))))) | → | 44(44(41(10(03(32(24(x1))))))) | (1042) |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 + 1 |
| [03(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 + 1 |
| [00(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 + 1 |
| [15(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 + 1 |
| [32(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| 11(15(55(51(x1)))) | → | 10(05(53(31(15(51(x1)))))) | (377) |
| 11(15(55(50(x1)))) | → | 10(05(53(31(15(50(x1)))))) | (378) |
| 11(15(55(53(x1)))) | → | 10(05(53(31(15(53(x1)))))) | (379) |
| 11(15(55(52(x1)))) | → | 10(05(53(31(15(52(x1)))))) | (380) |
| 11(15(55(55(x1)))) | → | 10(05(53(31(15(55(x1)))))) | (381) |
| 11(15(55(54(x1)))) | → | 10(05(53(31(15(54(x1)))))) | (382) |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 + 1 |
| [32(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 + 1 |
| [42(x1)] | = | 1 · x1 + 1 |
| 31(10(02(25(51(x1))))) | → | 32(23(30(01(15(51(x1)))))) | (1205) |
| 31(10(02(25(50(x1))))) | → | 32(23(30(01(15(50(x1)))))) | (1206) |
| 31(10(02(25(53(x1))))) | → | 32(23(30(01(15(53(x1)))))) | (1207) |
| 31(10(02(25(52(x1))))) | → | 32(23(30(01(15(52(x1)))))) | (1208) |
| 31(10(02(25(55(x1))))) | → | 32(23(30(01(15(55(x1)))))) | (1209) |
| 31(10(02(25(54(x1))))) | → | 32(23(30(01(15(54(x1)))))) | (1210) |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 + 1 |
| [25(x1)] | = | 1 · x1 |
| [22(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [42(x1)] | = | 1 · x1 |
| 21(10(02(25(51(x1))))) | → | 22(23(30(01(15(51(x1)))))) | (1211) |
| 21(10(02(25(50(x1))))) | → | 22(23(30(01(15(50(x1)))))) | (1212) |
| 21(10(02(25(53(x1))))) | → | 22(23(30(01(15(53(x1)))))) | (1213) |
| 21(10(02(25(52(x1))))) | → | 22(23(30(01(15(52(x1)))))) | (1214) |
| 21(10(02(25(55(x1))))) | → | 22(23(30(01(15(55(x1)))))) | (1215) |
| 21(10(02(25(54(x1))))) | → | 22(23(30(01(15(54(x1)))))) | (1216) |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [13(x1)] | = | 1 · x1 |
| [33(x1)] | = | 1 · x1 |
| [14(x1)] | = | 1 · x1 |
| [40(x1)] | = | 1 · x1 |
| [41(x1)] | = | 1 · x1 |
| [30(x1)] | = | 1 · x1 |
| [45(x1)] | = | 1 · x1 |
| [25(x1)] | = | 1 · x1 + 1 |
| [42(x1)] | = | 1 · x1 |
| [23(x1)] | = | 1 · x1 |
| [21(x1)] | = | 1 · x1 |
| 41(10(02(25(51(x1))))) | → | 42(23(30(01(15(51(x1)))))) | (1217) |
| 41(10(02(25(50(x1))))) | → | 42(23(30(01(15(50(x1)))))) | (1218) |
| 41(10(02(25(53(x1))))) | → | 42(23(30(01(15(53(x1)))))) | (1219) |
| 41(10(02(25(52(x1))))) | → | 42(23(30(01(15(52(x1)))))) | (1220) |
| 41(10(02(25(55(x1))))) | → | 42(23(30(01(15(55(x1)))))) | (1221) |
| 41(10(02(25(54(x1))))) | → | 42(23(30(01(15(54(x1)))))) | (1222) |
There are 135 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 05#(50(00(x1))) | → | 50#(x1) | (1521) |
| 50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
| 50#(01(11(15(50(x1))))) | → | 50#(00(x1)) | (1589) |
| 50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
| 00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
| 50#(01(11(15(55(x1))))) | → | 50#(05(x1)) | (1593) |
| 50#(01(11(15(55(x1))))) | → | 05#(x1) | (1594) |
| 00#(01(11(15(50(x1))))) | → | 50#(00(x1)) | (1581) |
| 00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
| 00#(01(11(15(55(x1))))) | → | 50#(05(x1)) | (1585) |
| 00#(01(11(15(55(x1))))) | → | 05#(x1) | (1586) |
| [05(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [03(x1)] | = | 1 · x1 |
| [31(x1)] | = | 1 · x1 |
| [10(x1)] | = | 1 · x1 |
| [35(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [53(x1)] | = | 1 · x1 |
| [02(x1)] | = | 1 · x1 |
| [52(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [04(x1)] | = | 1 · x1 |
| [54(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [50#(x1)] | = | 1 · x1 |
| [05#(x1)] | = | 1 · x1 |
| [00#(x1)] | = | 1 · x1 |
| 05(50(01(x1))) | → | 03(31(10(03(35(51(x1)))))) | (341) |
| 05(50(00(x1))) | → | 03(31(10(03(35(50(x1)))))) | (342) |
| 05(50(03(x1))) | → | 03(31(10(03(35(53(x1)))))) | (343) |
| 05(50(02(x1))) | → | 03(31(10(03(35(52(x1)))))) | (344) |
| 05(50(05(x1))) | → | 03(31(10(03(35(55(x1)))))) | (345) |
| 05(50(04(x1))) | → | 03(31(10(03(35(54(x1)))))) | (346) |
| 50(01(11(15(51(x1))))) | → | 51(15(51(15(50(01(x1)))))) | (1115) |
| 50(01(11(15(50(x1))))) | → | 51(15(51(15(50(00(x1)))))) | (1116) |
| 50(01(11(15(53(x1))))) | → | 51(15(51(15(50(03(x1)))))) | (1117) |
| 50(01(11(15(52(x1))))) | → | 51(15(51(15(50(02(x1)))))) | (1118) |
| 50(01(11(15(55(x1))))) | → | 51(15(51(15(50(05(x1)))))) | (1119) |
| 50(01(11(15(54(x1))))) | → | 51(15(51(15(50(04(x1)))))) | (1120) |
| 50(05(51(15(51(x1))))) | → | 51(10(05(53(35(51(x1)))))) | (1187) |
| 50(05(51(15(50(x1))))) | → | 51(10(05(53(35(50(x1)))))) | (1188) |
| 50(05(51(15(53(x1))))) | → | 51(10(05(53(35(53(x1)))))) | (1189) |
| 50(05(51(15(52(x1))))) | → | 51(10(05(53(35(52(x1)))))) | (1190) |
| 50(05(51(15(55(x1))))) | → | 51(10(05(53(35(55(x1)))))) | (1191) |
| 50(05(51(15(54(x1))))) | → | 51(10(05(53(35(54(x1)))))) | (1192) |
| 00(01(11(15(51(x1))))) | → | 01(15(51(15(50(01(x1)))))) | (1091) |
| 00(01(11(15(50(x1))))) | → | 01(15(51(15(50(00(x1)))))) | (1092) |
| 00(01(11(15(53(x1))))) | → | 01(15(51(15(50(03(x1)))))) | (1093) |
| 00(01(11(15(52(x1))))) | → | 01(15(51(15(50(02(x1)))))) | (1094) |
| 00(01(11(15(55(x1))))) | → | 01(15(51(15(50(05(x1)))))) | (1095) |
| 00(01(11(15(54(x1))))) | → | 01(15(51(15(50(04(x1)))))) | (1096) |
| 00(05(51(15(51(x1))))) | → | 01(10(05(53(35(51(x1)))))) | (1163) |
| 00(05(51(15(50(x1))))) | → | 01(10(05(53(35(50(x1)))))) | (1164) |
| 00(05(51(15(53(x1))))) | → | 01(10(05(53(35(53(x1)))))) | (1165) |
| 00(05(51(15(52(x1))))) | → | 01(10(05(53(35(52(x1)))))) | (1166) |
| 00(05(51(15(55(x1))))) | → | 01(10(05(53(35(55(x1)))))) | (1167) |
| 00(05(51(15(54(x1))))) | → | 01(10(05(53(35(54(x1)))))) | (1168) |
The dependency pairs are split into 1 component.
| 50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
| 50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
| 00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
| 50#(01(11(15(55(x1))))) | → | 05#(x1) | (1594) |
| 05#(50(00(x1))) | → | 50#(x1) | (1521) |
| 00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
| 00#(01(11(15(55(x1))))) | → | 05#(x1) | (1586) |
| [01(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 · x1 |
| [50#(x1)] | = | 1 · x1 |
| [00#(x1)] | = | 1 · x1 |
| [05#(x1)] | = | 1 · x1 |
| [50#(x1)] | = | 1 · x1 |
| [01(x1)] | = | 1 · x1 |
| [11(x1)] | = | 1 · x1 |
| [15(x1)] | = | 1 · x1 |
| [51(x1)] | = | 1 · x1 |
| [50(x1)] | = | 1 · x1 |
| [00#(x1)] | = | 1 · x1 |
| [55(x1)] | = | 1 · x1 |
| [05#(x1)] | = | 1 · x1 |
| [00(x1)] | = | 1 + 1 · x1 |
| 05#(50(00(x1))) | → | 50#(x1) | (1521) |
The dependency pairs are split into 1 component.
| 50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
| 00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
| 50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
| 00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
| [50#(x1)] | = | -2 + 2 · x1 |
| [01(x1)] | = | x1 |
| [11(x1)] | = | 2 · x1 |
| [15(x1)] | = | x1 |
| [50(x1)] | = | 1 + x1 |
| [00#(x1)] | = | 1 + 2 · x1 |
| [51(x1)] | = | 1 + 2 · x1 |
| 50#(01(11(15(50(x1))))) | → | 00#(x1) | (1590) |
| 00#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1580) |
| 50#(01(11(15(51(x1))))) | → | 50#(01(x1)) | (1588) |
| 00#(01(11(15(50(x1))))) | → | 00#(x1) | (1582) |
There are no pairs anymore.