The rewrite relation of the following TRS is considered.
| 0(0(x1)) | → | 1(0(2(0(2(x1))))) | (1) |
| 0(0(x1)) | → | 0(2(3(4(0(2(x1)))))) | (2) |
| 0(3(x1)) | → | 0(2(3(2(x1)))) | (3) |
| 0(3(x1)) | → | 2(0(2(1(3(x1))))) | (4) |
| 0(3(x1)) | → | 2(3(0(2(2(x1))))) | (5) |
| 0(3(x1)) | → | 0(2(2(2(3(2(x1)))))) | (6) |
| 0(0(0(x1))) | → | 0(2(0(0(x1)))) | (7) |
| 0(0(4(x1))) | → | 2(4(0(0(3(2(x1)))))) | (8) |
| 0(0(5(x1))) | → | 0(5(2(0(x1)))) | (9) |
| 0(1(3(x1))) | → | 3(2(2(1(0(x1))))) | (10) |
| 0(3(0(x1))) | → | 2(0(2(3(4(0(x1)))))) | (11) |
| 0(4(3(x1))) | → | 3(0(2(4(x1)))) | (12) |
| 0(4(3(x1))) | → | 1(0(2(1(3(4(x1)))))) | (13) |
| 0(4(3(x1))) | → | 2(2(4(3(4(0(x1)))))) | (14) |
| 0(4(5(x1))) | → | 2(4(0(5(2(5(x1)))))) | (15) |
| 0(4(5(x1))) | → | 5(3(2(4(4(0(x1)))))) | (16) |
| 0(5(0(x1))) | → | 0(5(2(4(0(x1))))) | (17) |
| 0(5(0(x1))) | → | 5(0(2(3(2(0(x1)))))) | (18) |
| 0(5(3(x1))) | → | 3(2(5(3(2(0(x1)))))) | (19) |
| 1(0(0(x1))) | → | 1(0(2(5(0(2(x1)))))) | (20) |
| 1(0(3(x1))) | → | 2(1(3(0(5(2(x1)))))) | (21) |
| 1(0(4(x1))) | → | 3(0(2(1(4(x1))))) | (22) |
| 1(0(4(x1))) | → | 2(1(2(1(4(0(x1)))))) | (23) |
| 3(0(0(x1))) | → | 3(0(2(0(x1)))) | (24) |
| 3(0(3(x1))) | → | 3(0(2(3(x1)))) | (25) |
| 3(0(3(x1))) | → | 3(3(2(2(0(x1))))) | (26) |
| 3(0(4(x1))) | → | 2(2(3(4(0(x1))))) | (27) |
| 3(0(4(x1))) | → | 2(3(4(2(0(3(x1)))))) | (28) |
| 3(0(4(x1))) | → | 5(5(2(4(0(3(x1)))))) | (29) |
| 3(3(4(x1))) | → | 3(2(1(3(2(4(x1)))))) | (30) |
| 3(5(0(x1))) | → | 3(5(1(0(2(1(x1)))))) | (31) |
| 4(0(4(x1))) | → | 0(2(4(4(0(x1))))) | (32) |
| 4(0(4(x1))) | → | 1(4(0(2(4(0(x1)))))) | (33) |
| 0(0(4(3(x1)))) | → | 3(0(0(2(1(4(x1)))))) | (34) |
| 0(0(5(3(x1)))) | → | 0(5(2(5(0(3(x1)))))) | (35) |
| 0(1(0(3(x1)))) | → | 2(1(0(3(0(x1))))) | (36) |
| 0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
| 0(4(0(0(x1)))) | → | 0(4(0(2(1(0(x1)))))) | (38) |
| 0(4(1(3(x1)))) | → | 2(1(4(2(0(3(x1)))))) | (39) |
| 0(4(5(3(x1)))) | → | 4(3(2(5(0(x1))))) | (40) |
| 0(4(5(3(x1)))) | → | 4(3(5(0(2(4(x1)))))) | (41) |
| 0(5(0(4(x1)))) | → | 5(0(0(2(4(x1))))) | (42) |
| 0(5(5(3(x1)))) | → | 2(3(5(5(0(x1))))) | (43) |
| 1(3(0(4(x1)))) | → | 4(0(1(2(3(x1))))) | (44) |
| 4(0(3(5(x1)))) | → | 5(2(3(4(2(0(x1)))))) | (45) |
| 0(0(1(0(4(x1))))) | → | 0(0(0(1(4(2(x1)))))) | (46) |
| 0(0(5(5(3(x1))))) | → | 0(5(0(3(2(5(x1)))))) | (47) |
| 3(0(4(3(4(x1))))) | → | 3(0(3(4(2(4(x1)))))) | (48) |
| 3(3(0(4(5(x1))))) | → | 1(4(5(3(0(3(x1)))))) | (49) |
| 3(4(2(0(3(x1))))) | → | 2(3(0(2(3(4(x1)))))) | (50) |
| 0(0(x1)) | → | 2(0(2(0(1(x1))))) | (51) |
| 0(0(x1)) | → | 2(0(4(3(2(0(x1)))))) | (52) |
| 3(0(x1)) | → | 2(3(2(0(x1)))) | (53) |
| 3(0(x1)) | → | 3(1(2(0(2(x1))))) | (54) |
| 3(0(x1)) | → | 2(2(0(3(2(x1))))) | (55) |
| 3(0(x1)) | → | 2(3(2(2(2(0(x1)))))) | (56) |
| 0(0(0(x1))) | → | 0(0(2(0(x1)))) | (57) |
| 4(0(0(x1))) | → | 2(3(0(0(4(2(x1)))))) | (58) |
| 5(0(0(x1))) | → | 0(2(5(0(x1)))) | (59) |
| 3(1(0(x1))) | → | 0(1(2(2(3(x1))))) | (60) |
| 0(3(0(x1))) | → | 0(4(3(2(0(2(x1)))))) | (61) |
| 3(4(0(x1))) | → | 4(2(0(3(x1)))) | (62) |
| 3(4(0(x1))) | → | 4(3(1(2(0(1(x1)))))) | (63) |
| 3(4(0(x1))) | → | 0(4(3(4(2(2(x1)))))) | (64) |
| 5(4(0(x1))) | → | 5(2(5(0(4(2(x1)))))) | (65) |
| 5(4(0(x1))) | → | 0(4(4(2(3(5(x1)))))) | (66) |
| 0(5(0(x1))) | → | 0(4(2(5(0(x1))))) | (67) |
| 0(5(0(x1))) | → | 0(2(3(2(0(5(x1)))))) | (68) |
| 3(5(0(x1))) | → | 0(2(3(5(2(3(x1)))))) | (69) |
| 0(0(1(x1))) | → | 2(0(5(2(0(1(x1)))))) | (70) |
| 3(0(1(x1))) | → | 2(5(0(3(1(2(x1)))))) | (71) |
| 4(0(1(x1))) | → | 4(1(2(0(3(x1))))) | (72) |
| 4(0(1(x1))) | → | 0(4(1(2(1(2(x1)))))) | (73) |
| 0(0(3(x1))) | → | 0(2(0(3(x1)))) | (74) |
| 3(0(3(x1))) | → | 3(2(0(3(x1)))) | (75) |
| 3(0(3(x1))) | → | 0(2(2(3(3(x1))))) | (76) |
| 4(0(3(x1))) | → | 0(4(3(2(2(x1))))) | (77) |
| 4(0(3(x1))) | → | 3(0(2(4(3(2(x1)))))) | (78) |
| 4(0(3(x1))) | → | 3(0(4(2(5(5(x1)))))) | (79) |
| 4(3(3(x1))) | → | 4(2(3(1(2(3(x1)))))) | (80) |
| 0(5(3(x1))) | → | 1(2(0(1(5(3(x1)))))) | (81) |
| 4(0(4(x1))) | → | 0(4(4(2(0(x1))))) | (82) |
| 4(0(4(x1))) | → | 0(4(2(0(4(1(x1)))))) | (83) |
| 3(4(0(0(x1)))) | → | 4(1(2(0(0(3(x1)))))) | (84) |
| 3(5(0(0(x1)))) | → | 3(0(5(2(5(0(x1)))))) | (85) |
| 3(0(1(0(x1)))) | → | 0(3(0(1(2(x1))))) | (86) |
| 0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
| 0(0(4(0(x1)))) | → | 0(1(2(0(4(0(x1)))))) | (87) |
| 3(1(4(0(x1)))) | → | 3(0(2(4(1(2(x1)))))) | (88) |
| 3(5(4(0(x1)))) | → | 0(5(2(3(4(x1))))) | (89) |
| 3(5(4(0(x1)))) | → | 4(2(0(5(3(4(x1)))))) | (90) |
| 4(0(5(0(x1)))) | → | 4(2(0(0(5(x1))))) | (91) |
| 3(5(5(0(x1)))) | → | 0(5(5(3(2(x1))))) | (92) |
| 4(0(3(1(x1)))) | → | 3(2(1(0(4(x1))))) | (93) |
| 5(3(0(4(x1)))) | → | 0(2(4(3(2(5(x1)))))) | (94) |
| 4(0(1(0(0(x1))))) | → | 2(4(1(0(0(0(x1)))))) | (95) |
| 3(5(5(0(0(x1))))) | → | 5(2(3(0(5(0(x1)))))) | (96) |
| 4(3(4(0(3(x1))))) | → | 4(2(4(3(0(3(x1)))))) | (97) |
| 5(4(0(3(3(x1))))) | → | 3(0(3(5(4(1(x1)))))) | (98) |
| 3(0(2(4(3(x1))))) | → | 4(3(2(0(3(2(x1)))))) | (99) |
There are 148 ruless (increase limit for explicit display).
The dependency pairs are split into 2 components.
| 0#(5(0(x1))) | → | 0#(5(x1)) | (148) |
| 0#(5(0(x1))) | → | 5#(x1) | (149) |
| 5#(0(0(x1))) | → | 5#(0(x1)) | (118) |
| 5#(4(0(x1))) | → | 3#(5(x1)) | (142) |
| 3#(1(0(x1))) | → | 3#(x1) | (120) |
| 3#(4(0(x1))) | → | 0#(3(x1)) | (126) |
| 3#(4(0(x1))) | → | 3#(x1) | (127) |
| 3#(5(0(x1))) | → | 3#(x1) | (153) |
| 3#(0(3(x1))) | → | 3#(3(x1)) | (167) |
| 3#(4(0(0(x1)))) | → | 0#(0(3(x1))) | (192) |
| 3#(4(0(0(x1)))) | → | 0#(3(x1)) | (193) |
| 3#(4(0(0(x1)))) | → | 3#(x1) | (194) |
| 3#(5(0(0(x1)))) | → | 5#(0(x1)) | (198) |
| 5#(4(0(x1))) | → | 5#(x1) | (143) |
| 5#(3(0(4(x1)))) | → | 5#(x1) | (229) |
| 5#(4(0(3(3(x1))))) | → | 3#(0(3(5(4(1(x1)))))) | (239) |
| 3#(0(1(0(x1)))) | → | 0#(3(0(1(2(x1))))) | (199) |
| 3#(5(4(0(x1)))) | → | 3#(4(x1)) | (210) |
| 3#(5(4(0(x1)))) | → | 4#(x1) | (211) |
| 4#(0(0(x1))) | → | 3#(0(0(4(2(x1))))) | (113) |
| 3#(5(4(0(x1)))) | → | 0#(5(3(4(x1)))) | (213) |
| 3#(5(4(0(x1)))) | → | 5#(3(4(x1))) | (214) |
| 3#(5(5(0(0(x1))))) | → | 3#(0(5(0(x1)))) | (233) |
| 3#(5(5(0(0(x1))))) | → | 0#(5(0(x1))) | (234) |
| 3#(5(5(0(0(x1))))) | → | 5#(0(x1)) | (235) |
| 4#(0(1(x1))) | → | 0#(3(x1)) | (160) |
| 4#(0(1(x1))) | → | 3#(x1) | (161) |
| 4#(0(3(x1))) | → | 5#(5(x1)) | (178) |
| 4#(0(3(x1))) | → | 5#(x1) | (179) |
| 4#(0(4(x1))) | → | 0#(x1) | (186) |
| 4#(0(5(0(x1)))) | → | 0#(0(5(x1))) | (216) |
| 4#(0(5(0(x1)))) | → | 0#(5(x1)) | (217) |
| 4#(0(5(0(x1)))) | → | 5#(x1) | (218) |
| 4#(0(3(1(x1)))) | → | 0#(4(x1)) | (224) |
| 4#(0(3(1(x1)))) | → | 4#(x1) | (225) |
| 4#(0(1(0(0(x1))))) | → | 0#(0(0(x1))) | (231) |
| 4#(3(4(0(3(x1))))) | → | 4#(3(0(3(x1)))) | (237) |
| 4#(3(4(0(3(x1))))) | → | 3#(0(3(x1))) | (238) |
| [0#(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 + 1 · x1 |
| [5#(x1)] | = | 1 · x1 |
| [4(x1)] | = | 1 · x1 |
| [3#(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 · x1 |
| [3(x1)] | = | 1 · x1 |
| [2(x1)] | = | 0 |
| [4#(x1)] | = | 1 + 1 · x1 |
| 0#(5(0(x1))) | → | 0#(5(x1)) | (148) |
| 0#(5(0(x1))) | → | 5#(x1) | (149) |
| 5#(0(0(x1))) | → | 5#(0(x1)) | (118) |
| 5#(4(0(x1))) | → | 3#(5(x1)) | (142) |
| 3#(1(0(x1))) | → | 3#(x1) | (120) |
| 3#(4(0(x1))) | → | 0#(3(x1)) | (126) |
| 3#(4(0(x1))) | → | 3#(x1) | (127) |
| 3#(5(0(x1))) | → | 3#(x1) | (153) |
| 3#(0(3(x1))) | → | 3#(3(x1)) | (167) |
| 3#(4(0(0(x1)))) | → | 0#(0(3(x1))) | (192) |
| 3#(4(0(0(x1)))) | → | 0#(3(x1)) | (193) |
| 3#(4(0(0(x1)))) | → | 3#(x1) | (194) |
| 3#(5(0(0(x1)))) | → | 5#(0(x1)) | (198) |
| 5#(4(0(x1))) | → | 5#(x1) | (143) |
| 5#(3(0(4(x1)))) | → | 5#(x1) | (229) |
| 3#(0(1(0(x1)))) | → | 0#(3(0(1(2(x1))))) | (199) |
| 3#(5(4(0(x1)))) | → | 3#(4(x1)) | (210) |
| 4#(0(0(x1))) | → | 3#(0(0(4(2(x1))))) | (113) |
| 3#(5(4(0(x1)))) | → | 0#(5(3(4(x1)))) | (213) |
| 3#(5(4(0(x1)))) | → | 5#(3(4(x1))) | (214) |
| 3#(5(5(0(0(x1))))) | → | 0#(5(0(x1))) | (234) |
| 3#(5(5(0(0(x1))))) | → | 5#(0(x1)) | (235) |
| 4#(0(1(x1))) | → | 0#(3(x1)) | (160) |
| 4#(0(1(x1))) | → | 3#(x1) | (161) |
| 4#(0(3(x1))) | → | 5#(5(x1)) | (178) |
| 4#(0(3(x1))) | → | 5#(x1) | (179) |
| 4#(0(4(x1))) | → | 0#(x1) | (186) |
| 4#(0(5(0(x1)))) | → | 0#(0(5(x1))) | (216) |
| 4#(0(5(0(x1)))) | → | 0#(5(x1)) | (217) |
| 4#(0(5(0(x1)))) | → | 5#(x1) | (218) |
| 4#(0(3(1(x1)))) | → | 0#(4(x1)) | (224) |
| 4#(0(3(1(x1)))) | → | 4#(x1) | (225) |
| 4#(0(1(0(0(x1))))) | → | 0#(0(0(x1))) | (231) |
| 4#(3(4(0(3(x1))))) | → | 3#(0(3(x1))) | (238) |
The dependency pairs are split into 2 components.
| 3#(5(5(0(0(x1))))) | → | 3#(0(5(0(x1)))) | (233) |
| [3#(x1)] | = | 1 · x1 |
| [5(x1)] | = | 1 |
| [0(x1)] | = | 0 |
| [2(x1)] | = | 0 |
| [1(x1)] | = | 0 |
| [4(x1)] | = | 0 |
| [3(x1)] | = | 1 + 1 · x1 |
| 0(0(x1)) | → | 2(0(2(0(1(x1))))) | (51) |
| 0(0(x1)) | → | 2(0(4(3(2(0(x1)))))) | (52) |
| 0(0(0(x1))) | → | 0(0(2(0(x1)))) | (57) |
| 0(3(0(x1))) | → | 0(4(3(2(0(2(x1)))))) | (61) |
| 0(5(0(x1))) | → | 0(4(2(5(0(x1))))) | (67) |
| 0(5(0(x1))) | → | 0(2(3(2(0(5(x1)))))) | (68) |
| 0(0(1(x1))) | → | 2(0(5(2(0(1(x1)))))) | (70) |
| 0(0(3(x1))) | → | 0(2(0(3(x1)))) | (74) |
| 0(5(3(x1))) | → | 1(2(0(1(5(3(x1)))))) | (81) |
| 0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
| 0(0(4(0(x1)))) | → | 0(1(2(0(4(0(x1)))))) | (87) |
| 3#(5(5(0(0(x1))))) | → | 3#(0(5(0(x1)))) | (233) |
There are no pairs anymore.
| 4#(3(4(0(3(x1))))) | → | 4#(3(0(3(x1)))) | (237) |
| [4#(x1)] | = | 1 · x1 |
| [3(x1)] | = | 1 + 1 · x1 |
| [4(x1)] | = | 1 |
| [0(x1)] | = | 0 |
| [2(x1)] | = | 1 · x1 |
| [1(x1)] | = | 0 |
| [5(x1)] | = | 1 + 1 · x1 |
| 3(0(x1)) | → | 2(3(2(0(x1)))) | (53) |
| 3(0(x1)) | → | 3(1(2(0(2(x1))))) | (54) |
| 3(0(x1)) | → | 2(2(0(3(2(x1))))) | (55) |
| 3(0(x1)) | → | 2(3(2(2(2(0(x1)))))) | (56) |
| 3(1(0(x1))) | → | 0(1(2(2(3(x1))))) | (60) |
| 3(4(0(x1))) | → | 4(2(0(3(x1)))) | (62) |
| 3(4(0(x1))) | → | 4(3(1(2(0(1(x1)))))) | (63) |
| 3(4(0(x1))) | → | 0(4(3(4(2(2(x1)))))) | (64) |
| 3(5(0(x1))) | → | 0(2(3(5(2(3(x1)))))) | (69) |
| 3(0(1(x1))) | → | 2(5(0(3(1(2(x1)))))) | (71) |
| 3(0(3(x1))) | → | 3(2(0(3(x1)))) | (75) |
| 3(0(3(x1))) | → | 0(2(2(3(3(x1))))) | (76) |
| 3(4(0(0(x1)))) | → | 4(1(2(0(0(3(x1)))))) | (84) |
| 3(5(0(0(x1)))) | → | 3(0(5(2(5(0(x1)))))) | (85) |
| 3(0(1(0(x1)))) | → | 0(3(0(1(2(x1))))) | (86) |
| 3(1(4(0(x1)))) | → | 3(0(2(4(1(2(x1)))))) | (88) |
| 3(5(4(0(x1)))) | → | 0(5(2(3(4(x1))))) | (89) |
| 3(5(4(0(x1)))) | → | 4(2(0(5(3(4(x1)))))) | (90) |
| 3(5(5(0(x1)))) | → | 0(5(5(3(2(x1))))) | (92) |
| 3(5(5(0(0(x1))))) | → | 5(2(3(0(5(0(x1)))))) | (96) |
| 3(0(2(4(3(x1))))) | → | 4(3(2(0(3(2(x1)))))) | (99) |
| 0(0(x1)) | → | 2(0(2(0(1(x1))))) | (51) |
| 0(0(x1)) | → | 2(0(4(3(2(0(x1)))))) | (52) |
| 0(0(0(x1))) | → | 0(0(2(0(x1)))) | (57) |
| 0(3(0(x1))) | → | 0(4(3(2(0(2(x1)))))) | (61) |
| 0(5(0(x1))) | → | 0(4(2(5(0(x1))))) | (67) |
| 0(5(0(x1))) | → | 0(2(3(2(0(5(x1)))))) | (68) |
| 0(0(1(x1))) | → | 2(0(5(2(0(1(x1)))))) | (70) |
| 0(0(3(x1))) | → | 0(2(0(3(x1)))) | (74) |
| 0(5(3(x1))) | → | 1(2(0(1(5(3(x1)))))) | (81) |
| 0(1(1(0(x1)))) | → | 2(1(0(0(1(2(x1)))))) | (37) |
| 0(0(4(0(x1)))) | → | 0(1(2(0(4(0(x1)))))) | (87) |
| 4#(3(4(0(3(x1))))) | → | 4#(3(0(3(x1)))) | (237) |
There are no pairs anymore.
| 0#(0(x1)) | → | 0#(1(x1)) | (101) |
| 0#(1(1(0(x1)))) | → | 0#(0(1(2(x1)))) | (202) |
| [0(x1)] | = | 1 · x1 |
| [1(x1)] | = | 1 · x1 |
| [2(x1)] | = | 1 · x1 |
| [0#(x1)] | = | 1 · x1 |
| [0#(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 + 1 · x1 |
| [1(x1)] | = | 1 + 1 · x1 |
| [2(x1)] | = | 0 |
| 0#(1(1(0(x1)))) | → | 0#(0(1(2(x1)))) | (202) |
| [0#(x1)] | = | 1 · x1 |
| [0(x1)] | = | 1 + 1 · x1 |
| [1(x1)] | = | 1 · x1 |
| 0#(0(x1)) | → | 0#(1(x1)) | (101) |
There are no pairs anymore.