The rewrite relation of the following TRS is considered.
0(1(0(2(x1)))) | → | 0(0(1(3(2(x1))))) | (1) |
0(1(2(2(x1)))) | → | 0(3(2(2(1(x1))))) | (2) |
0(2(1(1(x1)))) | → | 0(1(1(1(3(2(x1)))))) | (3) |
0(2(3(2(x1)))) | → | 0(3(0(3(2(2(x1)))))) | (4) |
0(2(4(4(x1)))) | → | 3(0(4(2(4(x1))))) | (5) |
0(4(0(2(x1)))) | → | 3(0(0(4(2(x1))))) | (6) |
0(4(0(2(x1)))) | → | 3(0(0(0(4(2(x1)))))) | (7) |
0(4(5(1(x1)))) | → | 0(0(0(4(1(5(x1)))))) | (8) |
0(5(1(1(x1)))) | → | 0(1(1(3(5(x1))))) | (9) |
0(5(1(1(x1)))) | → | 0(1(3(1(5(x1))))) | (10) |
0(5(1(4(x1)))) | → | 0(3(3(4(1(5(x1)))))) | (11) |
0(5(3(2(x1)))) | → | 0(3(0(5(5(2(x1)))))) | (12) |
0(5(3(2(x1)))) | → | 3(0(3(5(5(2(x1)))))) | (13) |
0(5(4(1(x1)))) | → | 0(3(1(5(4(x1))))) | (14) |
0(5(4(1(x1)))) | → | 0(0(4(1(1(5(x1)))))) | (15) |
0(5(4(4(x1)))) | → | 4(0(4(3(5(x1))))) | (16) |
2(0(2(4(x1)))) | → | 2(2(4(0(0(x1))))) | (17) |
2(0(5(1(x1)))) | → | 0(0(0(5(2(1(x1)))))) | (18) |
2(0(5(1(x1)))) | → | 5(0(3(5(2(1(x1)))))) | (19) |
2(0(5(1(x1)))) | → | 5(3(0(5(2(1(x1)))))) | (20) |
2(0(5(4(x1)))) | → | 2(4(0(3(5(x1))))) | (21) |
5(1(0(2(x1)))) | → | 2(5(0(3(1(x1))))) | (22) |
5(3(2(4(x1)))) | → | 2(3(4(3(5(x1))))) | (23) |
5(4(0(2(x1)))) | → | 5(0(3(0(4(2(x1)))))) | (24) |
0(0(2(1(1(x1))))) | → | 0(3(0(1(2(1(x1)))))) | (25) |
0(1(5(1(4(x1))))) | → | 0(4(3(1(1(5(x1)))))) | (26) |
0(1(5(4(1(x1))))) | → | 4(0(1(1(3(5(x1)))))) | (27) |
0(2(0(2(4(x1))))) | → | 0(0(2(1(2(4(x1)))))) | (28) |
0(2(0(5(1(x1))))) | → | 5(0(0(0(2(1(x1)))))) | (29) |
0(2(1(3(2(x1))))) | → | 3(0(3(1(2(2(x1)))))) | (30) |
0(2(1(5(1(x1))))) | → | 0(5(2(1(1(0(x1)))))) | (31) |
0(2(3(5(1(x1))))) | → | 5(2(1(0(0(3(x1)))))) | (32) |
0(4(0(4(2(x1))))) | → | 3(0(0(4(4(2(x1)))))) | (33) |
0(5(0(2(4(x1))))) | → | 0(4(0(5(2(4(x1)))))) | (34) |
0(5(1(3(2(x1))))) | → | 0(3(4(1(5(2(x1)))))) | (35) |
0(5(4(3(2(x1))))) | → | 0(0(3(4(2(5(x1)))))) | (36) |
0(5(5(4(2(x1))))) | → | 4(0(3(5(5(2(x1)))))) | (37) |
2(0(1(2(4(x1))))) | → | 2(2(1(3(4(0(x1)))))) | (38) |
2(0(5(1(1(x1))))) | → | 5(0(2(3(1(1(x1)))))) | (39) |
2(5(5(1(1(x1))))) | → | 5(5(2(1(1(3(x1)))))) | (40) |
3(4(2(1(1(x1))))) | → | 3(4(3(1(1(2(x1)))))) | (41) |
3(5(0(2(1(x1))))) | → | 1(2(5(0(3(3(x1)))))) | (42) |
4(1(2(1(1(x1))))) | → | 3(4(1(1(2(1(x1)))))) | (43) |
4(1(2(4(1(x1))))) | → | 4(3(4(1(1(2(x1)))))) | (44) |
4(3(5(1(1(x1))))) | → | 3(4(1(1(1(5(x1)))))) | (45) |
5(0(1(5(1(x1))))) | → | 5(0(3(1(1(5(x1)))))) | (46) |
5(0(5(0(2(x1))))) | → | 2(0(0(0(5(5(x1)))))) | (47) |
5(1(4(5(1(x1))))) | → | 5(0(1(1(5(4(x1)))))) | (48) |
5(1(4(5(1(x1))))) | → | 5(3(4(1(1(5(x1)))))) | (49) |
5(3(1(5(4(x1))))) | → | 5(3(4(1(3(5(x1)))))) | (50) |
2(0(1(0(x1)))) | → | 2(3(1(0(0(x1))))) | (51) |
2(2(1(0(x1)))) | → | 1(2(2(3(0(x1))))) | (52) |
1(1(2(0(x1)))) | → | 2(3(1(1(1(0(x1)))))) | (53) |
2(3(2(0(x1)))) | → | 2(2(3(0(3(0(x1)))))) | (54) |
4(4(2(0(x1)))) | → | 4(2(4(0(3(x1))))) | (55) |
2(0(4(0(x1)))) | → | 2(4(0(0(3(x1))))) | (56) |
2(0(4(0(x1)))) | → | 2(4(0(0(0(3(x1)))))) | (57) |
1(5(4(0(x1)))) | → | 5(1(4(0(0(0(x1)))))) | (58) |
1(1(5(0(x1)))) | → | 5(3(1(1(0(x1))))) | (59) |
1(1(5(0(x1)))) | → | 5(1(3(1(0(x1))))) | (60) |
4(1(5(0(x1)))) | → | 5(1(4(3(3(0(x1)))))) | (61) |
2(3(5(0(x1)))) | → | 2(5(5(0(3(0(x1)))))) | (62) |
2(3(5(0(x1)))) | → | 2(5(5(3(0(3(x1)))))) | (63) |
1(4(5(0(x1)))) | → | 4(5(1(3(0(x1))))) | (64) |
1(4(5(0(x1)))) | → | 5(1(1(4(0(0(x1)))))) | (65) |
4(4(5(0(x1)))) | → | 5(3(4(0(4(x1))))) | (66) |
4(2(0(2(x1)))) | → | 0(0(4(2(2(x1))))) | (67) |
1(5(0(2(x1)))) | → | 1(2(5(0(0(0(x1)))))) | (68) |
1(5(0(2(x1)))) | → | 1(2(5(3(0(5(x1)))))) | (69) |
1(5(0(2(x1)))) | → | 1(2(5(0(3(5(x1)))))) | (70) |
4(5(0(2(x1)))) | → | 5(3(0(4(2(x1))))) | (71) |
2(0(1(5(x1)))) | → | 1(3(0(5(2(x1))))) | (72) |
4(2(3(5(x1)))) | → | 5(3(4(3(2(x1))))) | (73) |
2(0(4(5(x1)))) | → | 2(4(0(3(0(5(x1)))))) | (74) |
1(1(2(0(0(x1))))) | → | 1(2(1(0(3(0(x1)))))) | (75) |
4(1(5(1(0(x1))))) | → | 5(1(1(3(4(0(x1)))))) | (76) |
1(4(5(1(0(x1))))) | → | 5(3(1(1(0(4(x1)))))) | (77) |
4(2(0(2(0(x1))))) | → | 4(2(1(2(0(0(x1)))))) | (78) |
1(5(0(2(0(x1))))) | → | 1(2(0(0(0(5(x1)))))) | (79) |
2(3(1(2(0(x1))))) | → | 2(2(1(3(0(3(x1)))))) | (80) |
1(5(1(2(0(x1))))) | → | 0(1(1(2(5(0(x1)))))) | (81) |
1(5(3(2(0(x1))))) | → | 3(0(0(1(2(5(x1)))))) | (82) |
2(4(0(4(0(x1))))) | → | 2(4(4(0(0(3(x1)))))) | (83) |
4(2(0(5(0(x1))))) | → | 4(2(5(0(4(0(x1)))))) | (84) |
2(3(1(5(0(x1))))) | → | 2(5(1(4(3(0(x1)))))) | (85) |
2(3(4(5(0(x1))))) | → | 5(2(4(3(0(0(x1)))))) | (86) |
2(4(5(5(0(x1))))) | → | 2(5(5(3(0(4(x1)))))) | (87) |
4(2(1(0(2(x1))))) | → | 0(4(3(1(2(2(x1)))))) | (88) |
1(1(5(0(2(x1))))) | → | 1(1(3(2(0(5(x1)))))) | (89) |
1(1(5(5(2(x1))))) | → | 3(1(1(2(5(5(x1)))))) | (90) |
1(1(2(4(3(x1))))) | → | 2(1(1(3(4(3(x1)))))) | (91) |
1(2(0(5(3(x1))))) | → | 3(3(0(5(2(1(x1)))))) | (92) |
1(1(2(1(4(x1))))) | → | 1(2(1(1(4(3(x1)))))) | (93) |
1(4(2(1(4(x1))))) | → | 2(1(1(4(3(4(x1)))))) | (94) |
1(1(5(3(4(x1))))) | → | 5(1(1(1(4(3(x1)))))) | (95) |
1(5(1(0(5(x1))))) | → | 5(1(1(3(0(5(x1)))))) | (96) |
2(0(5(0(5(x1))))) | → | 5(5(0(0(0(2(x1)))))) | (97) |
1(5(4(1(5(x1))))) | → | 4(5(1(1(0(5(x1)))))) | (98) |
1(5(4(1(5(x1))))) | → | 5(1(1(4(3(5(x1)))))) | (99) |
4(5(1(3(5(x1))))) | → | 5(3(1(4(3(5(x1)))))) | (100) |
There are 123 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
2#(0(1(5(x1)))) | → | 2#(x1) | (145) |
2#(4(5(5(0(x1))))) | → | 4#(x1) | (185) |
4#(4(5(0(x1)))) | → | 4#(x1) | (134) |
4#(2(0(2(x1)))) | → | 4#(2(2(x1))) | (135) |
4#(2(0(2(x1)))) | → | 2#(2(x1)) | (136) |
2#(0(5(0(5(x1))))) | → | 2#(x1) | (215) |
4#(5(0(2(x1)))) | → | 4#(2(x1)) | (143) |
4#(2(3(5(x1)))) | → | 2#(x1) | (147) |
4#(2(1(0(2(x1))))) | → | 1#(2(2(x1))) | (187) |
1#(4(5(1(0(x1))))) | → | 4#(x1) | (158) |
4#(2(1(0(2(x1))))) | → | 2#(2(x1)) | (188) |
1#(1(5(0(2(x1))))) | → | 2#(0(5(x1))) | (191) |
1#(2(0(5(3(x1))))) | → | 2#(1(x1)) | (198) |
1#(2(0(5(3(x1))))) | → | 1#(x1) | (199) |
[2#(x1)] | = | 1 + 1 · x1 |
[0(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 · x1 |
[4#(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 + 1 · x1 |
[3(x1)] | = | 1 · x1 |
[1#(x1)] | = | 1 · x1 |
2#(4(5(5(0(x1))))) | → | 4#(x1) | (185) |
1#(2(0(5(3(x1))))) | → | 1#(x1) | (199) |
The dependency pairs are split into 2 components.
4#(2(0(2(x1)))) | → | 4#(2(2(x1))) | (135) |
4#(4(5(0(x1)))) | → | 4#(x1) | (134) |
4#(5(0(2(x1)))) | → | 4#(2(x1)) | (143) |
4#(2(1(0(2(x1))))) | → | 1#(2(2(x1))) | (187) |
1#(4(5(1(0(x1))))) | → | 4#(x1) | (158) |
[4#(x1)] | = | 1 |
[2(x1)] | = | 0 |
[0(x1)] | = | 0 |
[4(x1)] | = | 1 |
[5(x1)] | = | 0 |
[1(x1)] | = | 0 |
[1#(x1)] | = | 1 + 1 · x1 |
[3(x1)] | = | 0 |
2(0(1(0(x1)))) | → | 2(3(1(0(0(x1))))) | (51) |
2(2(1(0(x1)))) | → | 1(2(2(3(0(x1))))) | (52) |
2(3(2(0(x1)))) | → | 2(2(3(0(3(0(x1)))))) | (54) |
2(0(4(0(x1)))) | → | 2(4(0(0(3(x1))))) | (56) |
2(0(4(0(x1)))) | → | 2(4(0(0(0(3(x1)))))) | (57) |
2(3(5(0(x1)))) | → | 2(5(5(0(3(0(x1)))))) | (62) |
2(3(5(0(x1)))) | → | 2(5(5(3(0(3(x1)))))) | (63) |
2(0(1(5(x1)))) | → | 1(3(0(5(2(x1))))) | (72) |
2(0(4(5(x1)))) | → | 2(4(0(3(0(5(x1)))))) | (74) |
2(3(1(2(0(x1))))) | → | 2(2(1(3(0(3(x1)))))) | (80) |
2(4(0(4(0(x1))))) | → | 2(4(4(0(0(3(x1)))))) | (83) |
2(3(1(5(0(x1))))) | → | 2(5(1(4(3(0(x1)))))) | (85) |
2(3(4(5(0(x1))))) | → | 5(2(4(3(0(0(x1)))))) | (86) |
2(4(5(5(0(x1))))) | → | 2(5(5(3(0(4(x1)))))) | (87) |
2(0(5(0(5(x1))))) | → | 5(5(0(0(0(2(x1)))))) | (97) |
1#(4(5(1(0(x1))))) | → | 4#(x1) | (158) |
The dependency pairs are split into 1 component.
4#(4(5(0(x1)))) | → | 4#(x1) | (134) |
4#(2(0(2(x1)))) | → | 4#(2(2(x1))) | (135) |
4#(5(0(2(x1)))) | → | 4#(2(x1)) | (143) |
[4#(x1)] | = | 1 · x1 |
[4(x1)] | = | 1 + 1 · x1 |
[5(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 · x1 |
[2(x1)] | = | 0 |
[1(x1)] | = | 0 |
[3(x1)] | = | 0 |
2(0(1(0(x1)))) | → | 2(3(1(0(0(x1))))) | (51) |
2(2(1(0(x1)))) | → | 1(2(2(3(0(x1))))) | (52) |
2(3(2(0(x1)))) | → | 2(2(3(0(3(0(x1)))))) | (54) |
2(0(4(0(x1)))) | → | 2(4(0(0(3(x1))))) | (56) |
2(0(4(0(x1)))) | → | 2(4(0(0(0(3(x1)))))) | (57) |
2(3(5(0(x1)))) | → | 2(5(5(0(3(0(x1)))))) | (62) |
2(3(5(0(x1)))) | → | 2(5(5(3(0(3(x1)))))) | (63) |
2(0(1(5(x1)))) | → | 1(3(0(5(2(x1))))) | (72) |
2(0(4(5(x1)))) | → | 2(4(0(3(0(5(x1)))))) | (74) |
2(3(1(2(0(x1))))) | → | 2(2(1(3(0(3(x1)))))) | (80) |
2(4(0(4(0(x1))))) | → | 2(4(4(0(0(3(x1)))))) | (83) |
2(3(1(5(0(x1))))) | → | 2(5(1(4(3(0(x1)))))) | (85) |
2(3(4(5(0(x1))))) | → | 5(2(4(3(0(0(x1)))))) | (86) |
2(4(5(5(0(x1))))) | → | 2(5(5(3(0(4(x1)))))) | (87) |
2(0(5(0(5(x1))))) | → | 5(5(0(0(0(2(x1)))))) | (97) |
4#(4(5(0(x1)))) | → | 4#(x1) | (134) |
[4#(x1)] | = | 2 + x1 |
[2(x1)] | = | -2 |
[0(x1)] | = | 2 |
[1(x1)] | = | -2 |
[3(x1)] | = | -2 |
[4(x1)] | = | 2 |
[5(x1)] | = | -1 + x1 |
2(0(1(0(x1)))) | → | 2(3(1(0(0(x1))))) | (51) |
2(2(1(0(x1)))) | → | 1(2(2(3(0(x1))))) | (52) |
2(3(2(0(x1)))) | → | 2(2(3(0(3(0(x1)))))) | (54) |
2(0(4(0(x1)))) | → | 2(4(0(0(3(x1))))) | (56) |
2(0(4(0(x1)))) | → | 2(4(0(0(0(3(x1)))))) | (57) |
2(3(5(0(x1)))) | → | 2(5(5(0(3(0(x1)))))) | (62) |
2(3(5(0(x1)))) | → | 2(5(5(3(0(3(x1)))))) | (63) |
2(0(1(5(x1)))) | → | 1(3(0(5(2(x1))))) | (72) |
2(0(4(5(x1)))) | → | 2(4(0(3(0(5(x1)))))) | (74) |
2(3(1(2(0(x1))))) | → | 2(2(1(3(0(3(x1)))))) | (80) |
2(4(0(4(0(x1))))) | → | 2(4(4(0(0(3(x1)))))) | (83) |
2(3(1(5(0(x1))))) | → | 2(5(1(4(3(0(x1)))))) | (85) |
2(3(4(5(0(x1))))) | → | 5(2(4(3(0(0(x1)))))) | (86) |
2(4(5(5(0(x1))))) | → | 2(5(5(3(0(4(x1)))))) | (87) |
2(0(5(0(5(x1))))) | → | 5(5(0(0(0(2(x1)))))) | (97) |
4#(5(0(2(x1)))) | → | 4#(2(x1)) | (143) |
[4#(x1)] | = | 1 · x1 |
[2(x1)] | = | 1 · x1 |
[0(x1)] | = | 1 + 1 · x1 |
[1(x1)] | = | 0 |
[3(x1)] | = | 0 |
[4(x1)] | = | 0 |
[5(x1)] | = | 0 |
2(0(1(0(x1)))) | → | 2(3(1(0(0(x1))))) | (51) |
2(2(1(0(x1)))) | → | 1(2(2(3(0(x1))))) | (52) |
2(3(2(0(x1)))) | → | 2(2(3(0(3(0(x1)))))) | (54) |
2(0(4(0(x1)))) | → | 2(4(0(0(3(x1))))) | (56) |
2(0(4(0(x1)))) | → | 2(4(0(0(0(3(x1)))))) | (57) |
2(3(5(0(x1)))) | → | 2(5(5(0(3(0(x1)))))) | (62) |
2(3(5(0(x1)))) | → | 2(5(5(3(0(3(x1)))))) | (63) |
2(0(1(5(x1)))) | → | 1(3(0(5(2(x1))))) | (72) |
2(0(4(5(x1)))) | → | 2(4(0(3(0(5(x1)))))) | (74) |
2(3(1(2(0(x1))))) | → | 2(2(1(3(0(3(x1)))))) | (80) |
2(4(0(4(0(x1))))) | → | 2(4(4(0(0(3(x1)))))) | (83) |
2(3(1(5(0(x1))))) | → | 2(5(1(4(3(0(x1)))))) | (85) |
2(3(4(5(0(x1))))) | → | 5(2(4(3(0(0(x1)))))) | (86) |
2(4(5(5(0(x1))))) | → | 2(5(5(3(0(4(x1)))))) | (87) |
2(0(5(0(5(x1))))) | → | 5(5(0(0(0(2(x1)))))) | (97) |
4#(2(0(2(x1)))) | → | 4#(2(2(x1))) | (135) |
There are no pairs anymore.
2#(0(5(0(5(x1))))) | → | 2#(x1) | (215) |
2#(0(1(5(x1)))) | → | 2#(x1) | (145) |
[0(x1)] | = | 1 · x1 |
[5(x1)] | = | 1 · x1 |
[1(x1)] | = | 1 · x1 |
[2#(x1)] | = | 1 · x1 |
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
2#(0(5(0(5(x1))))) | → | 2#(x1) | (215) |
1 | > | 1 | |
2#(0(1(5(x1)))) | → | 2#(x1) | (145) |
1 | > | 1 |
As there is no critical graph in the transitive closure, there are no infinite chains.