The rewrite relation of the following TRS is considered.
| 0(0(0(x1))) | → | 0(0(1(0(2(x1))))) | (1) | 
| 0(3(2(x1))) | → | 4(3(0(2(x1)))) | (2) | 
| 0(0(4(2(x1)))) | → | 0(4(1(0(2(x1))))) | (3) | 
| 0(0(5(2(x1)))) | → | 5(0(2(3(0(x1))))) | (4) | 
| 0(1(3(2(x1)))) | → | 0(3(1(0(2(x1))))) | (5) | 
| 0(1(3(2(x1)))) | → | 3(1(1(0(2(x1))))) | (6) | 
| 0(1(3(2(x1)))) | → | 0(1(4(3(1(2(x1)))))) | (7) | 
| 0(4(1(3(x1)))) | → | 1(4(3(0(2(2(x1)))))) | (8) | 
| 0(4(2(3(x1)))) | → | 5(4(3(0(2(x1))))) | (9) | 
| 0(4(5(2(x1)))) | → | 5(0(2(2(4(2(x1)))))) | (10) | 
| 0(5(1(3(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (11) | 
| 0(5(3(0(x1)))) | → | 5(0(1(4(3(0(x1)))))) | (12) | 
| 0(5(3(2(x1)))) | → | 5(1(5(0(2(3(x1)))))) | (13) | 
| 4(0(2(3(x1)))) | → | 3(4(3(0(2(x1))))) | (14) | 
| 4(0(2(3(x1)))) | → | 4(3(5(0(2(x1))))) | (15) | 
| 4(4(1(3(x1)))) | → | 4(3(4(1(2(2(x1)))))) | (16) | 
| 4(5(2(0(x1)))) | → | 4(2(1(5(0(2(x1)))))) | (17) | 
| 4(5(2(0(x1)))) | → | 5(1(0(2(2(4(x1)))))) | (18) | 
| 5(1(0(0(x1)))) | → | 5(1(0(2(0(x1))))) | (19) | 
| 5(1(0(0(x1)))) | → | 5(2(1(0(2(0(x1)))))) | (20) | 
| 5(1(3(0(x1)))) | → | 5(0(2(1(3(x1))))) | (21) | 
| 5(1(3(2(x1)))) | → | 3(0(1(5(1(2(x1)))))) | (22) | 
| 5(1(3(2(x1)))) | → | 3(1(1(5(2(2(x1)))))) | (23) | 
| 5(3(0(0(x1)))) | → | 5(0(4(3(0(2(x1)))))) | (24) | 
| 0(0(4(1(3(x1))))) | → | 4(0(1(0(2(3(x1)))))) | (25) | 
| 0(0(4(5(2(x1))))) | → | 5(0(1(0(2(4(x1)))))) | (26) | 
| 0(0(5(3(2(x1))))) | → | 0(1(5(0(2(3(x1)))))) | (27) | 
| 0(1(0(5(2(x1))))) | → | 1(0(2(5(1(0(x1)))))) | (28) | 
| 0(1(4(5(2(x1))))) | → | 2(1(5(0(2(4(x1)))))) | (29) | 
| 0(3(1(4(0(x1))))) | → | 4(1(0(1(0(3(x1)))))) | (30) | 
| 0(3(2(0(0(x1))))) | → | 0(0(1(0(2(3(x1)))))) | (31) | 
| 0(3(4(0(2(x1))))) | → | 4(3(0(2(1(0(x1)))))) | (32) | 
| 0(3(4(0(2(x1))))) | → | 4(3(0(2(3(0(x1)))))) | (33) | 
| 0(3(4(4(2(x1))))) | → | 4(0(3(4(2(2(x1)))))) | (34) | 
| 0(4(2(5(3(x1))))) | → | 0(4(3(5(1(2(x1)))))) | (35) | 
| 0(5(1(2(0(x1))))) | → | 3(0(1(5(0(2(x1)))))) | (36) | 
| 4(4(2(2(0(x1))))) | → | 4(1(0(2(2(4(x1)))))) | (37) | 
| 4(5(1(2(0(x1))))) | → | 5(0(4(1(2(2(x1)))))) | (38) | 
| 4(5(2(3(2(x1))))) | → | 5(4(3(5(2(2(x1)))))) | (39) | 
| 5(1(0(3(2(x1))))) | → | 5(0(3(1(0(2(x1)))))) | (40) | 
| 5(1(0(5(3(x1))))) | → | 5(5(0(1(3(1(x1)))))) | (41) | 
| 5(1(3(0(0(x1))))) | → | 3(5(0(1(2(0(x1)))))) | (42) | 
| 5(1(3(0(2(x1))))) | → | 3(0(2(1(5(2(x1)))))) | (43) | 
| 5(1(3(0(2(x1))))) | → | 5(0(1(0(3(2(x1)))))) | (44) | 
| 5(1(3(0(2(x1))))) | → | 5(0(1(1(2(3(x1)))))) | (45) | 
| 5(1(3(2(0(x1))))) | → | 5(3(1(5(2(0(x1)))))) | (46) | 
| 5(1(3(2(3(x1))))) | → | 3(4(3(5(1(2(x1)))))) | (47) | 
| 5(1(4(5(2(x1))))) | → | 5(1(4(1(5(2(x1)))))) | (48) | 
| 5(5(1(3(2(x1))))) | → | 3(5(5(4(1(2(x1)))))) | (49) | 
| 0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) | 
| 2(3(0(x1))) | → | 2(0(3(4(x1)))) | (51) | 
| 2(4(0(0(x1)))) | → | 2(0(1(4(0(x1))))) | (52) | 
| 2(5(0(0(x1)))) | → | 0(3(2(0(5(x1))))) | (53) | 
| 2(3(1(0(x1)))) | → | 2(0(1(3(0(x1))))) | (54) | 
| 2(3(1(0(x1)))) | → | 2(0(1(1(3(x1))))) | (55) | 
| 2(3(1(0(x1)))) | → | 2(1(3(4(1(0(x1)))))) | (56) | 
| 3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) | 
| 3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) | 
| 2(5(4(0(x1)))) | → | 2(4(2(2(0(5(x1)))))) | (59) | 
| 3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) | 
| 0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) | 
| 2(3(5(0(x1)))) | → | 3(2(0(5(1(5(x1)))))) | (62) | 
| 3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) | 
| 3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) | 
| 3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) | 
| 0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) | 
| 0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) | 
| 0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) | 
| 2(3(1(5(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (71) | 
| 2(3(1(5(x1)))) | → | 2(2(5(1(1(3(x1)))))) | (72) | 
| 0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) | 
| 3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) | 
| 2(5(4(0(0(x1))))) | → | 4(2(0(1(0(5(x1)))))) | (75) | 
| 2(3(5(0(0(x1))))) | → | 3(2(0(5(1(0(x1)))))) | (76) | 
| 2(5(0(1(0(x1))))) | → | 0(1(5(2(0(1(x1)))))) | (77) | 
| 2(5(4(1(0(x1))))) | → | 4(2(0(5(1(2(x1)))))) | (78) | 
| 0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) | 
| 0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) | 
| 2(0(4(3(0(x1))))) | → | 0(1(2(0(3(4(x1)))))) | (81) | 
| 2(0(4(3(0(x1))))) | → | 0(3(2(0(3(4(x1)))))) | (82) | 
| 2(4(4(3(0(x1))))) | → | 2(2(4(3(0(4(x1)))))) | (83) | 
| 3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) | 
| 0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) | 
| 0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) | 
| 0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) | 
| 2(3(2(5(4(x1))))) | → | 2(2(5(3(4(5(x1)))))) | (88) | 
| 2(3(0(1(5(x1))))) | → | 2(0(1(3(0(5(x1)))))) | (89) | 
| 3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) | 
| 0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) | 
| 2(0(3(1(5(x1))))) | → | 2(5(1(2(0(3(x1)))))) | (92) | 
| 2(0(3(1(5(x1))))) | → | 2(3(0(1(0(5(x1)))))) | (93) | 
| 2(0(3(1(5(x1))))) | → | 3(2(1(1(0(5(x1)))))) | (94) | 
| 0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) | 
| 3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) | 
| 2(5(4(1(5(x1))))) | → | 2(5(1(4(1(5(x1)))))) | (97) | 
| 2(3(1(5(5(x1))))) | → | 2(1(4(5(5(3(x1)))))) | (98) | 
There are 150 ruless (increase limit for explicit display).
The dependency pairs are split into 1 component.
| 0#(2(5(4(x1)))) | → | 2#(4(x1)) | (150) | 
| 2#(4(4(3(0(x1))))) | → | 2#(2(4(3(0(4(x1)))))) | (201) | 
| 2#(3(1(0(x1)))) | → | 3#(0(x1)) | (112) | 
| 3#(2(0(4(x1)))) | → | 3#(x1) | (141) | 
| 3#(1(5(0(x1)))) | → | 0#(3(x1)) | (130) | 
| 0#(0(1(5(x1)))) | → | 2#(5(x1)) | (159) | 
| 2#(5(4(1(0(x1))))) | → | 2#(x1) | (187) | 
| 2#(3(1(0(x1)))) | → | 3#(x1) | (115) | 
| 3#(1(5(0(x1)))) | → | 3#(x1) | (131) | 
| 3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) | 
| 2#(3(1(5(x1)))) | → | 0#(3(x1)) | (164) | 
| 0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) | 
| 0#(2(1(5(0(x1))))) | → | 0#(3(x1)) | (209) | 
| 0#(2(1(5(0(x1))))) | → | 3#(x1) | (210) | 
| 0#(0(3(1(5(x1))))) | → | 3#(x1) | (229) | 
| 2#(3(1(5(x1)))) | → | 3#(x1) | (165) | 
| 2#(4(4(3(0(x1))))) | → | 2#(4(3(0(4(x1))))) | (202) | 
| 2#(4(4(3(0(x1))))) | → | 3#(0(4(x1))) | (203) | 
| 2#(0(3(1(5(x1))))) | → | 2#(0(3(x1))) | (231) | 
| 2#(0(3(1(5(x1))))) | → | 0#(3(x1)) | (232) | 
| 2#(0(3(1(5(x1))))) | → | 3#(x1) | (233) | 
| 2#(3(1(5(5(x1))))) | → | 3#(x1) | (248) | 
| [0#(x1)] | = | 1 · x1 | 
| [2(x1)] | = | 1 · x1 | 
| [5(x1)] | = | 1 | 
| [4(x1)] | = | 0 | 
| [2#(x1)] | = | 0 | 
| [3(x1)] | = | 0 | 
| [0(x1)] | = | 0 | 
| [1(x1)] | = | 0 | 
| [3#(x1)] | = | 0 | 
| 0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) | 
| 3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) | 
| 3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) | 
| 3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) | 
| 3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) | 
| 3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) | 
| 3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) | 
| 3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) | 
| 3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) | 
| 3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) | 
| 3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) | 
| 0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) | 
| 0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) | 
| 0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) | 
| 0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) | 
| 0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) | 
| 0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) | 
| 0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) | 
| 0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) | 
| 0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) | 
| 0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) | 
| 0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) | 
| 0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) | 
| 0#(2(5(4(x1)))) | → | 2#(4(x1)) | (150) | 
| [2#(x1)] | = | 0 | 
| [4(x1)] | = | 0 | 
| [3(x1)] | = | 0 | 
| [0(x1)] | = | 1 | 
| [2(x1)] | = | 0 | 
| [1(x1)] | = | 0 | 
| [3#(x1)] | = | 0 | 
| [5(x1)] | = | 0 | 
| [0#(x1)] | = | 1 · x1 | 
| 0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) | 
| 3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) | 
| 3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) | 
| 3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) | 
| 3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) | 
| 3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) | 
| 3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) | 
| 3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) | 
| 3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) | 
| 3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) | 
| 3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) | 
| 0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) | 
| 0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) | 
| 0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) | 
| 0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) | 
| 0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) | 
| 0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) | 
| 0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) | 
| 0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) | 
| 0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) | 
| 0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) | 
| 0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) | 
| 0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) | 
| 0#(0(1(5(x1)))) | → | 2#(5(x1)) | (159) | 
| 0#(0(3(1(5(x1))))) | → | 3#(x1) | (229) | 
The dependency pairs are split into 4 components.
| 2#(5(4(1(0(x1))))) | → | 2#(x1) | (187) | 
| [5(x1)] | = | 1 · x1 | 
| [4(x1)] | = | 1 · x1 | 
| [1(x1)] | = | 1 · x1 | 
| [0(x1)] | = | 1 · x1 | 
| [2#(x1)] | = | 1 · x1 | 
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 2#(5(4(1(0(x1))))) | → | 2#(x1) | (187) | 
| 1 | > | 1 | 
As there is no critical graph in the transitive closure, there are no infinite chains.
| 2#(0(3(1(5(x1))))) | → | 2#(0(3(x1))) | (231) | 
| [2#(x1)] | = | 1 · x1 | 
| [0(x1)] | = | 1 · x1 | 
| [3(x1)] | = | 1 · x1 | 
| [1(x1)] | = | 1 · x1 | 
| [5(x1)] | = | 1 + 1 · x1 | 
| [4(x1)] | = | 0 | 
| [2(x1)] | = | 0 | 
| 3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) | 
| 3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) | 
| 3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) | 
| 3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) | 
| 3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) | 
| 3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) | 
| 3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) | 
| 3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) | 
| 3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) | 
| 3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) | 
| 0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) | 
| 0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) | 
| 0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) | 
| 0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) | 
| 0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) | 
| 0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) | 
| 0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) | 
| 0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) | 
| 0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) | 
| 0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) | 
| 0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) | 
| 0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) | 
| 0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) | 
| 2#(0(3(1(5(x1))))) | → | 2#(0(3(x1))) | (231) | 
There are no pairs anymore.
| 2#(4(4(3(0(x1))))) | → | 2#(4(3(0(4(x1))))) | (202) | 
| 2#(4(4(3(0(x1))))) | → | 2#(2(4(3(0(4(x1)))))) | (201) | 
| [2#(x1)] | = | 1 · x1 | 
| [4(x1)] | = | 1 + 1 · x1 | 
| [3(x1)] | = | 0 | 
| [0(x1)] | = | 0 | 
| [2(x1)] | = | 1 · x1 | 
| [1(x1)] | = | 0 | 
| [5(x1)] | = | 1 · x1 | 
| 3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) | 
| 3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) | 
| 3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) | 
| 3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) | 
| 3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) | 
| 3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) | 
| 3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) | 
| 3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) | 
| 3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) | 
| 3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) | 
| 2(4(0(0(x1)))) | → | 2(0(1(4(0(x1))))) | (52) | 
| 2(4(4(3(0(x1))))) | → | 2(2(4(3(0(4(x1)))))) | (83) | 
| 2(3(1(0(x1)))) | → | 2(0(1(3(0(x1))))) | (54) | 
| 2(3(1(0(x1)))) | → | 2(0(1(1(3(x1))))) | (55) | 
| 2(3(1(0(x1)))) | → | 2(1(3(4(1(0(x1)))))) | (56) | 
| 2(3(1(5(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (71) | 
| 2(3(1(5(x1)))) | → | 2(2(5(1(1(3(x1)))))) | (72) | 
| 2(3(5(0(0(x1))))) | → | 3(2(0(5(1(0(x1)))))) | (76) | 
| 2(5(4(1(0(x1))))) | → | 4(2(0(5(1(2(x1)))))) | (78) | 
| 2(0(3(1(5(x1))))) | → | 2(5(1(2(0(3(x1)))))) | (92) | 
| 2(3(1(5(5(x1))))) | → | 2(1(4(5(5(3(x1)))))) | (98) | 
| 2(5(0(0(x1)))) | → | 0(3(2(0(5(x1))))) | (53) | 
| 2(5(4(0(x1)))) | → | 2(4(2(2(0(5(x1)))))) | (59) | 
| 2(5(4(0(0(x1))))) | → | 4(2(0(1(0(5(x1)))))) | (75) | 
| 2(5(0(1(0(x1))))) | → | 0(1(5(2(0(1(x1)))))) | (77) | 
| 2(5(4(1(5(x1))))) | → | 2(5(1(4(1(5(x1)))))) | (97) | 
| 2(3(0(x1))) | → | 2(0(3(4(x1)))) | (51) | 
| 2(3(5(0(x1)))) | → | 3(2(0(5(1(5(x1)))))) | (62) | 
| 2(0(4(3(0(x1))))) | → | 0(1(2(0(3(4(x1)))))) | (81) | 
| 2(0(4(3(0(x1))))) | → | 0(3(2(0(3(4(x1)))))) | (82) | 
| 2(3(2(5(4(x1))))) | → | 2(2(5(3(4(5(x1)))))) | (88) | 
| 2(3(0(1(5(x1))))) | → | 2(0(1(3(0(5(x1)))))) | (89) | 
| 2(0(3(1(5(x1))))) | → | 2(3(0(1(0(5(x1)))))) | (93) | 
| 2(0(3(1(5(x1))))) | → | 3(2(1(1(0(5(x1)))))) | (94) | 
| 2#(4(4(3(0(x1))))) | → | 2#(4(3(0(4(x1))))) | (202) | 
| 2#(4(4(3(0(x1))))) | → | 2#(2(4(3(0(4(x1)))))) | (201) | 
There are no pairs anymore.
| 3#(1(5(0(x1)))) | → | 0#(3(x1)) | (130) | 
| 0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) | 
| 0#(2(1(5(0(x1))))) | → | 0#(3(x1)) | (209) | 
| 0#(2(1(5(0(x1))))) | → | 3#(x1) | (210) | 
| 3#(1(5(0(x1)))) | → | 3#(x1) | (131) | 
| 3#(2(0(4(x1)))) | → | 3#(x1) | (141) | 
| 3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) | 
| [0#(x1)] | = | -1 + 2 · x1 | 
| [3(x1)] | = | 0 | 
| [1(x1)] | = | -2 + 2 · x1 | 
| [4(x1)] | = | -2 | 
| [0(x1)] | = | 1 | 
| [2(x1)] | = | -1 + x1 | 
| [5(x1)] | = | 2 · x1 | 
| [3#(x1)] | = | 1 | 
| 3(1(4(0(x1)))) | → | 2(2(0(3(4(1(x1)))))) | (57) | 
| 3(2(4(0(x1)))) | → | 2(0(3(4(5(x1))))) | (58) | 
| 3(1(5(0(x1)))) | → | 2(1(5(1(0(3(x1)))))) | (60) | 
| 3(2(0(4(x1)))) | → | 2(0(3(4(3(x1))))) | (63) | 
| 3(2(0(4(x1)))) | → | 2(0(5(3(4(x1))))) | (64) | 
| 3(1(4(4(x1)))) | → | 2(2(1(4(3(4(x1)))))) | (65) | 
| 3(1(4(0(0(x1))))) | → | 3(2(0(1(0(4(x1)))))) | (74) | 
| 3(5(2(4(0(x1))))) | → | 2(1(5(3(4(0(x1)))))) | (84) | 
| 3(5(0(1(5(x1))))) | → | 1(3(1(0(5(5(x1)))))) | (90) | 
| 3(2(3(1(5(x1))))) | → | 2(1(5(3(4(3(x1)))))) | (96) | 
| 0(0(0(x1))) | → | 2(0(1(0(0(x1))))) | (50) | 
| 0(3(5(0(x1)))) | → | 0(3(4(1(0(5(x1)))))) | (61) | 
| 0(2(5(4(x1)))) | → | 2(0(5(1(2(4(x1)))))) | (66) | 
| 0(2(5(4(x1)))) | → | 4(2(2(0(1(5(x1)))))) | (67) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(5(x1))))) | (68) | 
| 0(0(1(5(x1)))) | → | 0(2(0(1(2(5(x1)))))) | (69) | 
| 0(3(1(5(x1)))) | → | 3(1(2(0(5(x1))))) | (70) | 
| 0(0(3(5(x1)))) | → | 2(0(3(4(0(5(x1)))))) | (73) | 
| 0(4(1(3(0(x1))))) | → | 3(0(1(0(1(4(x1)))))) | (79) | 
| 0(0(2(3(0(x1))))) | → | 3(2(0(1(0(0(x1)))))) | (80) | 
| 0(2(1(5(0(x1))))) | → | 2(0(5(1(0(3(x1)))))) | (85) | 
| 0(2(2(4(4(x1))))) | → | 4(2(2(0(1(4(x1)))))) | (86) | 
| 0(2(1(5(4(x1))))) | → | 2(2(1(4(0(5(x1)))))) | (87) | 
| 0(0(3(1(5(x1))))) | → | 0(2(1(0(5(3(x1)))))) | (91) | 
| 0(2(3(1(5(x1))))) | → | 0(2(5(1(3(5(x1)))))) | (95) | 
| 3#(1(5(0(x1)))) | → | 0#(3(x1)) | (130) | 
| 0#(2(1(5(0(x1))))) | → | 0#(3(x1)) | (209) | 
The dependency pairs are split into 2 components.
| 0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) | 
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 0#(0(2(3(0(x1))))) | → | 0#(0(x1)) | (194) | 
| 1 | > | 1 | 
As there is no critical graph in the transitive closure, there are no infinite chains.
| 3#(2(0(4(x1)))) | → | 3#(x1) | (141) | 
| 3#(1(5(0(x1)))) | → | 3#(x1) | (131) | 
| 3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) | 
| [2(x1)] | = | 1 · x1 | 
| [0(x1)] | = | 1 · x1 | 
| [4(x1)] | = | 1 · x1 | 
| [1(x1)] | = | 1 · x1 | 
| [5(x1)] | = | 1 · x1 | 
| [3(x1)] | = | 1 · x1 | 
| [3#(x1)] | = | 1 · x1 | 
Using size-change termination in combination with the subterm criterion one obtains the following initial size-change graphs.
| 3#(2(0(4(x1)))) | → | 3#(x1) | (141) | 
| 1 | > | 1 | |
| 3#(1(5(0(x1)))) | → | 3#(x1) | (131) | 
| 1 | > | 1 | |
| 3#(2(3(1(5(x1))))) | → | 3#(x1) | (245) | 
| 1 | > | 1 | 
As there is no critical graph in the transitive closure, there are no infinite chains.